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Abstract

A sound philosophy of mathematical physics balances a philosophy of mathemat-
ics with a philosophy of physics, sharpening the general applicability problem of
mathematics by also taking care of: (i) the early modern ‘mathematization of the
world picture’; (ii) the remote and theory-laden character of the targets of mathe-
matical models of modern physics; and (iii): Wigner’s ‘unreasonable effectiveness
of mathematics in the natural sciences’. Guided by a historical survey, I propose that
theories of mathematical physics (such as general relativity, quantum mechanics, and
statistical mechanics) are meaning-constitutive a priori constructions, conventional
but far from arbitrary and best described as hypothetical. Their models subsequently
mediate between theory and nature, that is, between the a priori and the a posteri-
ori. Models mediate by playing the role of Wittgensteinian yardsticks or objects of
comparison to be held against nature as represented by data models, where the com-
parison is made via surrogative inference. This balancing act compromises realism.
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1 Introduction

To an unappreciated degree, the history of Western Philosophy is the history of at-
tempts to understand why mathematics is applicable to Nature, despite apparently
good reasons to believe that it should not be. (Steiner, 2005, p. 625)

This Element hopes to contribute to these attempts from the perspective of a mathematical
physicist. But before getting to this specific perspective, why is the applicability problem
so difficult in the first place? Plato and Aristotle were troubled already by “everyday”
mathematical objects like triangles, noting for example that the irrationality of /2 could
hardly be inferred empirically from a drawn right-angled triangle with short sides of unit
length. Kant and Wittgenstein even stumbled over 745 = 12 and 25 x 25 = 625, whose
apparent reference to “numbers” is puzzling: despite a lifetime of effort Frege did not even
manage to define the number one. These problems are difficult enough and they remain
unresolved. Mathematical physics (whose scope and nature I shall address shortly) adds
three further complications to this already nontrivial general applicability problem.

1. The first of these was enunciated by the Dutch historian of science Dijksterhuis:

classical mechanics is mathematical not only in the sense that it makes use
of mathematical terms and methods for abbreviating arguments which might,
if necessary, also be expressed in the language of everyday speech; it is also
mathematical in the much more stringent sense that its basic concepts are math-
ematical concepts, that mechanics itself is a mathematics[] (Dijksterhuis, 1961
p. 499)

This goes well beyond Galilei’s famous claim that ‘this grand book, the universe (...)
is written in the language of mathematics, and its characters are triangles, circles, and
other geometric figures.” Galilei’s mathematics could still reasonably be argued to be
instantiated within nature in a straightforward way (bracketing the issue of idealization,
which I shall discuss below). But Newton’s mathematics could not. His introduction,
in Principa, of the gravitational force as a mathematical entity blasted the revolutionary
but, until then, still naive ‘mathematization of the world picture’ by Galilei (as well as by
his predecessors like Plato, Ptolemy, Copernicus, and Kepler in so far as astronomy and
cosmology were concerned) Take the following two paths initiated by Newton in 1687:

e From his forces to the potentials introduced by Legendre, Laplace, and Poisson
around 1800, via the metric tensor in Riemannian geometry, to the Lorentzian met-
rics in Einstein’s theory of general relativity from 1915 (which neatly assembles 10
potentials for the gravitational field into a single geometric object).

e From his idiosyncratic mechanics to Euler’s rewriting thereof in terms of the calcu-
lus, to Lagrange’s analytical mechanics in high-dimensional configuration spaces,
to the infinite-dimensional complex Hilbert spaces of quantum mechanics.

I'The curious form ‘is a mathematics’ at the end also occurs in the Dutch original (‘is een wiskunde’).
2 At the end of his book (and after a lifetime of study) Dijksterhuis (1961) concludes that the mecha-
nization of the world picture (which is his title) consisted in the mathematization of the world picture.
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Except on some extreme form of mathematical realism, these theories describe properties
that go well beyond those that may reasonably be held to be instantiated by natural objects.

2. The second complication is closely related the first, namely the status of models.

The precise meaning of mathematical models of physics will be discussed in §3}; for now,
one may think of spacetimes solving Einstein’s equations as models of general relativity;
of the Standard Model of quantum field theory (defined rigorously via renormalized per-
turbation theory); or of Hamiltonians defined on Hilbert spaces in quantum mechanics;
or of specific stochastic processes as models of classical statistical mechanics. Outside
mathematical physics, in the general philosophy of science models typically have given,
unambiguous, and conceptually clear fargets, such as ships (Frigg, 2022), cities, the Lon-
don Tube, people modeled by portraits (Sudrez, 2024), or the deer population of Princeton
(van Fraassen, 2008). But mathematical models of modern theoretical physics often do
not have given and unambiguous targets: their would-be “targets” are model- or theory-
dependent constructions. Opposite to the situation in general science just discussed, mod-
els in mathematical physics are typically much clearer than their alleged targets. For
example, two iconic cases that have been studied in detail in the history and philosophy
of modern physics are the weak neutral currents from the Standard Model and the black
hole in M87 imaged by the Event Horizon Telescope. In both cases (and many others), the
idea of simply “observing” some natural phenomenon (the alleged “target”), which may
then be modeled by some theory, or extracting “raw data” from it, has been compromised
to such an extent that the logical positivists must turn in their gravesEI Why?

We will see in detail how much of the burden of experimental demonstration has
shifted to data analysis. For it is in this stage, in the sorting of signal from back-
ground, that twentieth-century experimental physics has deviated most sharply from
the earlier concept of a demonstration. (...) In the longest term this may be the sea
change of twentieth-century experimental physics. (Galison, 1987, p. 151)

This goes beyond the cliché that (almost) all observations are “theory-laden” The point
is rather that apart from the role of theory in setting up an experiment, it is also the
result (i.e., the ‘signal’) that is at least partly created by theory, as its separation from the
background is typically accomplished by letting the very theory that is supposed to predict
the result simulate the background (so that a different theory used for this purpose may
well annul the intended result). Thus it is not very clear at all what a “phenomenon” is,
and hence what the “target” of a mathematical model relevant to modern physics should
be. This also punctures the possibility of a referential interpretation of such models.

On my view, weak neutral currents in particle physics are part of some model (like the
Standard Model), whose purpose it is to make inferences about a data model. Similarly,
black holes are theoretical constructions within general relativity, which may be used to
explain or understand specific data models extracted from astronomical observations.

3See Pickering (1984) and Galison (1987) about weak neutral currents and Doboszewski & Elder (2025)
and Ochigame, Skulberg, & van Dongen (2025) about the EHT.

4See also Bokulich and Parker (2021). This is not only a twentieth-century phenomenon: for example,
all attempts to see “pure” planetary motion as uniform and circular from Plato onwards had to deal with
retrograde motion (Kuhn, 1957), which also involves ‘the sorting of signal from background’.



This typical lack of a clear connection between mathematical models of physics at
very small or very large scales and targets is closely connected to the previous compli-
cation for the philosophy of mathematical physics, i.e., the lack of instantiation in the
natural world of its mathematical objects; if there had been clear referents for those, there
might have been clear physical targets. In some cases there are; but these are exceptions.

3. A third point that makes a philosophy of mathematical physics not just a special
case of a philosophy of applied mathematics was famously raised by WignerE] viz.:

(a) ‘Mathematical concepts turn up in entirely unexpected connections.’

(b) ‘Moreover, they often permit an unexpectedly close and accurate descrip-
tion of the phenomena in these connections.” (Wigner, 1960, p. 2)

Wigner’s most convincing example of his first point is the use of complex numbers in
quantum mechanics, but there are many others, starting with the appearance of conical
sections in Newtonian gravityﬁ Wigner’s points add up to his title, a claim: The unrea-
sonable effectiveness of mathematics in the natural sciences. 1 return to this in

Understanding why mathematics is applicable to Nature therefore seems to be made
more difficult by focusing on mathematical physics. But this focus also makes it easier by
reducing the embarrassment of riches in the philosophies of mathematics and science. For
example, the points of Dijksterhuis and Wigner make empirically oriented philosophies of
mathematics like Aristotle’s or Mill’s unattractive, whilst the applicability of mathematics
altogether is difficult to explain for both Platonism (as already pointed out by Aristotle
in Metaphysics M and N) and for purely psychological philosophies like Brouwer’s intu-
itionism. Likewise, all non-mathematical philosophies of science can safely be ignored.

As a first step towards its philosophy, let us try to define mathematical physics[] As
in “the philosophy of mathematics” (scare quotes!), there is some circularity involved
here, since (unlike for example paleontology or arguably even physics) defining what
mathematics means is already part of its philosophy. To cut this circle I agree with Netz
(1999), p. 2, that what unites a scientific community is not shared beliefs but shared
practices. Thus I propose that mathematical physics is defined by its shared practices,
and that its philosophy consist of the (descriptive or normative) study of the various beliefs
that are or should be held about these practices. So what are these shared practices?

Journal of Mathematical Physics features content in all areas of mathematical physics.
Articles focus on areas of research that illustrate the application of mathematics to

>The secondary literature on Wigner (1960) is quite large, including e.g. Maddy (2007), Bangu (2012),
Islami (2017), Ferreirés (2017), Rédei (2020), and Bueno and French (2018), which also criticizes the
earlier analysis by Steiner (1998). All of these works are also relevant to the general topic of this paper.

This example was already given by Dijksterhuis (1961), footnote 5 to his last chapter—whose Dutch
original appeared in 1950, well before Wigner. His context was similar, namely the long delay between the
invention of some mathematical concept and its use in the natural sciences (which he finds unremarkable).

7 An integral history of mathematical physics remains to be written. There is of course a substantial
body of literature on Newton and his predecessors (who will be identified below). His greatest successors,
such as Euler, Laplace, Riemann, Poincaré, Hilbert, Weyl, von Neumann, and Kolmogorov, are typically
studied by historians of mathematics. One may also turn to case studies like Liitzen (1995, 2010, 2011),
Pulte (2005), Rédei and Stoltzner (2001), Darrigol (2005), and Landsman (2021).



problems in physics, the development of mathematical methods suitable for such
applications, and the formulation of physical theoriesﬂ

The mission of Communications in Mathematical Physics is to offer a high forum
for works which are motivated by the vision and the challenges of modern physics
and which at the same time meet the highest mathematical standardsﬂ

These modern century benchmarks plus general history suggest a timeless answer:

Mathematical physics consists of the use of rigorous and sophisticated mathematics (by
contemporary standards) for the study of inanimate nature, in which mathematics is not
Jjust instrumental but also plays a role in conceptualizing and understanding physics.

Although mathematical physics is often said to have started with Newton, my defini-
tion ranges from the ‘mixed sciences’ of Antiquity, i.e., astronomy, harmonics, optics,
and mechanics, to the classics of 20th century mathematical physicsm Since the former
were already discussed by Aristotle, who was a philosopher of both mathematics and sci-
ence (probably even the first philosopher of science), my definition also makes him the
first philosopher of mathematical physics—although, as we shall see, he denied its very
possibility! This makes a historical approach both unavoidable and inspiring, so that in
chapters [2] and [3]I present a survey of (implicit or explicit) philosophies of mathematical
physics from Plato and Aristotle to Wittgenstein and HilbertE including the philosoph-
ical views of Galilei and Newton (and more briefly Ptolemy, Copernicus, and Kepler),
as well as some relevant parts of the history of mathematical physics. This history, suf-
ficiently coarse-grained, involved a gradual transition from what Lakatos called the Eu-
clidean model, in which premisses of a deductive enterprise are considered self-evident
and true a la Aristotle (which model Newton still used but simultaneously undermined),
to the current hypothetico-deductive model, in which premisses are merely assumptions.

In §4 I complete this history by discussing the a priori, for which, perhaps surpris-
ingly, after Kant my main inspiration has been Wittgenstein. This is not only because
in my view the a priori in mathematical physics consists of mathematical theories con-
strued as language games based on rules, but also because these rules relate to reality via
Wittgensteinian objects of comparison or yardsticks to be held against nature: the mod-
els of such theories (broadly conceived, ranging from exact solutions of exact equations
provided by the theory to approximate solutions of approximate equations) play the role
of these yardsticks, and hence mediate between theory and nature, i.e., between the a
priori and the a posteriori P__ZI Here, models are not held against natural phenomena them-
selves (which would involve the difficulty of comparing a mathematical structure with a
non-mathematical one), but against data models thereof (which also resolves the “target”
problem), and the actual comparison is done via surrogative inference. See

8See the journal homepage at https://pubs.aip.org/aip/jmp.
9See the journal homepage at https://link.springer.com/journal/220.
10Such as Weyl (1919, 1928), von Neumann (1932), Streater and Wightman (1964), Ruelle (1969, 1978),
Reed and Simon (1972-1978), Hawking and Ellis (1973), Haag (1992), and Choquet-Bruhat (2009).
"'Wittgenstein never wrote about mathematical physics as such, but I will use some key insights from
his late philosophy of language, which was influenced by his philosophy of mathematics (Kienzler, 1997).
12This resonates and sympathizes with a ‘models as mediators” approach (Morrison and Morgan, 1999),
but that approach assumes that models are much more independent of theories than I would allow.



Moreover, the a priori theories are supposed to be meaning-constitutive for the con-
cepts and terms appearing in their models. Though conventional in the sense of a descrip-
tion of a gameE-I the rules defining mathematical theories of physics are by no means
arbitrary, since they are inspired not only by empirical science, but also by such things
as the autonomous development of mathematics, aesthetic criteria, and the desire to over-
come internal contradictions and/or clashes with new experiments in earlier theories, etc.
Hence the word ‘hypothetical’ describes the situation much better than the usual ‘conven-
tional’, if only to stress that I do not endorse concepts of “truth by convention”ﬂ

In §5]I also discuss some examples from actual mathematical physics (involving black
holes and elementary particle physics). In §6|I give a short philosophical conclusion in
which I explain how I tried to combine “best practices” from Aristotle onwards, and also
briefly discuss the challenge my ensuing philosophy of mathematical physics poses to
realism. This turns out to lead back to Wigner’s problem, which I address and hopefully
bring forward a little, alas without resolving it: some “miracle” remains (also for realists!).

2 Historical survey: Plato to Galilei

Returning to my opening quotation of Steiner, I start with the ‘apparently good reasons to
believe why mathematics should not be applicable to Nature.” In so far as we still have a
record (I restrict myself to the Western philosophical tradition) these reasons go back to
Plato (or, more generally, to Antiquity). Plato noticed for example that the irrationality of
v/2 (which was well known at the time) follows from proof but could never be inferred
empirically from a drawn triangle More generally, Plato noted a discrepancy between
the certainty and timelessness of the theorems of mathematics and the uncertainty of
empirical knowledge, mirrored by the difference between the ideal objects these theorems
are supposed to be about, such as the “breadthless” lines soon to be defined by Euclid
(precursors of whom were surely known to Plato) and the perfect figures (like circles and
triangles) made thereof, and what one actually sees or can construct in the natural world
As summarised by the great classicist Burnyeat (1987), p. 221, the Platonic argument,
though perhaps never stated literally in this form by Plato himself, may be taken to be:

(1) The theorems of mathematics (geometry, astronomy, etc.) are true;
(2) They are not true of physical objects in the sensible world;

Therefore,
(3) They are true of ideal objects distinct from sensible things.

The question, however, is which conclusions Plato drew from this. The traditional answer
is that he postulated an ineffable realm in which perfect mathematical object reside:

13See Landsman & Singh (2025) for a detailed discussion of this point.

14See Pulte (2005), Friedman (2001, 2002), Ben-Menahem, (2006), Kuusela (2019), Warren (2020,
2022), and Povich (2024).

15See e.g. von Fritz (1945) and Novak (1982, 1983) for Plato’s familiarity with the irrationality of v/2,
and also /3 all the way up to v/17. Relevant dialogues include Menon, Theaetetus, and Republic.

161n developing his views Plato was influenced by his tumultuous political environment (Atack, 2024).



But none of the poets of this world has ever yet sung the praises of the region beyond
the heaven, nor will they ever sing them in a worthy manner. But we must dare to
speak the truth anyway, especially when truth is our theme. So this is how it is: this
region contains the colourless, utterly formless, intangible being that actually is, with
which the realm of true knowledge is concerned, seen only by reason, the pilot of the
soul. (Phaedrus, 247cd, translation by Robin Waterfield, Oxford World Classics)

Yet it is unclear whether Plato himself actually meant the realm he just described to be
the home of mathematical objects In any case, the idea of an (alleged) “Platonic” realm
outside space, time, and the causal order of the natural world, which mathematicians sup-
posedly discover and describe though some special faculty of the mind, but which exists
independently of these mathematicians (or indeed of any natural being altogether), should
be distinguished from the related Platonic idea (often claimed to go back to Pythagorasm
a dubious attribution) to the effect that the universe itself has a mathematical structure,
as in the Timaeus To disambiguate the term ‘“Platonism” (and similarly “realism” in
the philosophy of mathematics), we call the alleged ineffable version “platonism” and its
naturalistic version “pythagoreanism” (both deliberately with lower case p).

As far as I know, until the second half of the twentieth century not a single important
mathematical physicist was a platonist, but many, including Galilei and Newton, endorsed
some version of pythagoreanism. Platonism with small p became popular only in the
twentieth century and hence it played practically no role during the period I am going
to describe, except—and this is important—as a foil for both Aristotle and Wittgenstein.

I proceed with Aristotle, whose inclusion may seem surprising at first sight, since in
Metaphysics E he denied the applicability of mathematics to what we now call physics!

"Landry (2023) is quite outspoken that he did not. See however Burnyeat (1987, 2000), and Panza
& Sereni (2013), §1.1. Apparently, much depends on one’s selection of texts and even of translations. A
relevant passage is Republic 510e-511a, in which Socrates tells Glaucon: ‘The very things which they [i.e.,
the mathematicians] mould and draw, which have shadows and images of themselves in water, these things
they treat in their turn as only images, but what they really seek is to get sight of those realities which can be
seen only by the mind’ (translation: Paul Shorey, Loeb Classical Library). Landry (2023, pp. 11-12), who
uses a different translation, takes this passage to mean that mathematical objects are hypothetical, existing
only in an “if-then” sense. But one can hardly blame earlier interpretations in which the mathematical
‘realities’ are put in Plato’s ‘region beyond the heaven’, which only the mind can see.

18See Burkert (1972) for a debunking of Pyhthagoras as a historical figure and founder of mathematics.

19See Gregory (2022) for a recent account. Plato’s cosmos is a geometric model of the heavenly bodies
based on arrangements of circles, predating Ptolemy’s infinitely more sophisticated model in the Almagest.

20Top pure mathematicians from the twentieth century who strongly endorsed platonism include Hardy
and Godel, for example: ‘I believe that mathematical reality lies outside us, that our function is to dis-
cover or observe it, and that the theorems which we prove, and which we describe grandiloquently as our
‘creations’, are simply our notes of our observations.” (Hardy, 1940); ‘The objects and theorems of math-
ematics are as objective and independent of our free choice and our creative acts as is the physical world.
(...) Thereby I mean the view that mathematics describes a non-sensual reality, which exists independently
both of the acts and [of] the dispositions of the human mind and is only perceived, and probably perceived
very incompletely, by the human mind.” (Gédel, 1951). In the second half of the century also leading math-
ematical physicists like Penrose and Connes, were outspoken platonists; see for example Penrose (2004)
and Connes, Lichnerowicz, and Schiitzenberger (2001). The technical arguments for platonism forwarded
by Connes and Penrose, based on Gddel’s incompleteness theorems, are in my view circular (Landsman
& Singh, 2025, §4), and in any case were not used by Godel himself. But their strongest commitment to
platonism seems emotional, and as such is shared by many if not most modern mathematicians.



Given the definitions of natural philosophy as concerning those things that change
and have an independent existence, and the definition of mathematics as concerning
those things that do not change and have no independent existence, and given that the
task of explanation is to account for physical and mathematical questions in terms of
the essential properties of the physical and mathematical domains respectively, there
can be no role for mathematics in physical explanation. Natural philosophy is an
autonomous discipline, reliant only on its own principles. (Gaukroger, 2020, p. 61)

Denying its very possibility, Aristotle may be claimed to have held up progress in mathe-
matical physics (and hence in physics as a whole) for almost two millennia! On the other
hand, his philosophy of mathematics and the mixed sciences leaves room for a more pos-
itive and lasting contribution to the philosophy of mathematical physics To see this, let
me quote two famous passages from his Physics and his Metaphysics, respectively:

We have next to consider how the mathematician differs from the physicist or nat-
ural philosopher; for natural bodies have surfaces and occupy spaces, have lengths
and present points, all which are subjects of mathematical study. (...) Physicists,
astronomers, and mathematicians, then, all have to deal with lines, figures and the
rest. But the mathematician is not concerned with these concepts gua boundaries of
natural bodies, nor with their properties as manifested in such bodies. Therefore he
abstracts them from physical conditions; for they are capable of being considered in
the mind in separation from the motions of the bodies to which they pertain. (Physics
B2, 193-1947

The best way to conduct an investigation in every case is to take that which does not
exist in separation and consider it separately; which is just what the arithmetician
or the geometrician does. For man, qua man, is one indivisible thing; and the arith-
metician assumes man to be one indivisible thing, and then considers whether there
is any attribute of man gua indivisible. And the geometrician considers man neither
qua man nor qua indivisible, but qua something solid. (Metaphysics M3, 1078aE5]

Thus mathematicians and physicists look at the very same natural object X ; but the former
limit their attention to its mathematical (i.e., quantitative) properties, whereas the latter
only consider its physical (that is, qualitative) properties, to be explained via causes,
definitions, and essences. In (Latinized) Aristotelian parlance, a mathematician looks
at a bronze sphere qua sphere, whereas a physicist looks at it qua bronze@ This act
of separation (or abstraction) led Aristotle to conclude that ‘mathematics deals not with
separable Forms but with quantitative characteristics which exist only as embodied in
matter’ in other words, mathematical objects are instantiated by physical objects and
hence form part of the natural world. This, then, obviates the need for a “platonic” realm,
although it is not clear whether Aristotle believed that physical objects at least in some
cases perfectly instantiate mathematical properties like a straight, breadthless line or a
sharp triangle made thereof; which they should in order to sideline Plato@]

2lgee e.g. Physics B2, 193-194, and Metaphysics M3, 1078a, and Bostock (2012) and Mendell (2019).
22Transl. F. M. Cornford and P. H. Wicksteed, Loeb Classical Library (Harvard University Press, 1957).
2Transl. H. Tredennick, Loeb Classical Library (Harvard University Press, 1961).

**More generally “X qua Y is short for “X in the respect that X is ¥”” (Mendell, 2019).

ZSMcMullin (1985), p. 249, footnote 5.

26See Bostock (2012) and Mendell (2019) for balanced views and references.



Aristotle’s barrier between mathematics and physics comes to a head in ancient as-
tronomy. This consisted of a mathematical part concerning the motions of the Sun, the
Moon, the planets, and the stars in the sky, whose goal it was to make predictions (e.g. in
the interest of astrology), and a physical part concerning the constitution of the heavenly
bodies and the causes of their motion. Duhem (1908) proposed that astronomy was purely
instrumentalist in being intended to just “save the phenomena”, in supposed contrast with
the realism of Copernicus, Kepler, and Galilei that heralded the scientific revolution.

But this view has been criticized from the early 1960s onwardsE] To the extent that
Greek mathematical astronomy was indeed instrumentalist, it was probably the first ex-
ample of what we now call (inferential) surrogative reasoning, in that the only role of the
mathematical models was to infer the future positions of the heavenly bodies from the
current and past ones. In any case, the mathematics was separate from the (astro)physics.

On the positive side, Aristotle’s theory of demonstrative sciences in the Posterior An-
alytics, which is an axiomatic-deductive call to arms, cast a long and beneficial shadow:

The details of Aristotle’s theory are obscure, but its outline is clear: a demonstra-
tive science is an axiomatised deductive system comprising a finite set of connected
demonstrations. (...) the premisses of a demonstration must be (a) true; (b) neces-
sary and universal; (c) immediate; and (d) causally related to the conclusion, which
must itself be true, necessary, and universal. (Barnes 1969, p. 123)

Such was the situation still encountered by Newton, to whom I will return. But before get-
ting there, I merely jump about four centuries after Aristotle and discuss the greatest text
in mathematical physics (as I construe it) before Principia, namely Ptolemy’s Almagest@
Consisting of thirteen books, like Euclid’s Elements, and written in a similar deductive
mathematical style, Ptolemy’s surely saw the Elements as a benchmark (as did Newton,
see below). The Almagest was a device for calculation of positions of the heavenly bodies
from earlier ones and mathematical principles. But what makes it unprecedented is that
‘the parameters for his planetary models are derived explicitly by geometric techniques
from specific dated observations’, as well as the fact that Ptolemy ‘reduces his models to
tables, and the means by which the tables are constructed are explicitly given—the appeal
is to geometry, not the arithmetical schemes of the Babylonians’ (Goldstein, 1997, p. 1).
As far as we know, the Almagest was the first book that constructed a serious mathemati-
cal model of some part of the natural world and compared model and world; as such it was
the first major work of mathematical physics. Ptolemy’s philosophy was as follows:

For Ptolemy, it seems that the mathematical agreement of the models (here called
“hypotheses”) with the observational data is evidence for the physical reality of the
models, even if they seem unduly complicated. (...) According to Ptolemy the
phenomena are ‘real’ and not illusions, for they are the criteria by which the models
are judged, not the other way around. (Goldstein, 1997, p. 8)

?7See especially MittelstraB (1962), Lloyd (1978), and Jardine (1979).

28The standard translation of the Almagest is Toomer (1984). Feke (2020) discusses Ptolemy’s mathe-
matical philosophy. Netz (2022), pp. 378-379, gives a helpful comparison between the Almagest and the
Elements. 1 skip Archimedes, undoubtedly one of the great mathematical physicists in history, since at least
in his surviving manuscripts he did not really reflect philosophically, cf. Netz (2022), pp. 206-207.

29This may be more evident from his Planetary Hypotheses (Hullmeine, 2024) than from the Almagest.
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As Copernicans, we now realize the mistake Ptolemy made: his (alleged) inference from
the (empirical) success of a model to its “reality” is unsound. Yet, in his defense:

We need to understand Ptolemy as under the influence of two unequal forces: the
pull of a Pythagoreanizing metaphysics of the universe as a harmonious, mathemat-
ical structure and the pull of the mathematical technique of the construction and
computation of astronomical tables. In the practice of Ptolemy’s astronomy, the pull
of technique is the more powerful, and so technique becomes nearly its own inde-
pendent pursuit, the metaphysics revealing itself merely intermittently. (Netz, 2022,
p. 381-384)

These unequal forces are still with us, continuing to pull mathematical physics—note
the inherent tension already in the very name of the field!—in opposite directions. The
beauty of our models, like Ptolemy’s, remains breathtaking, their power beyond expecta-
tion. Hence the lure of inferring physical reality from successful models, which Ptolemy
succumbed to, remains as compelling to us as it was for him, despite the eventual fall of
the Almagest and indeed all later, even more beautiful and successful models of the skym
In this Element I hope to show that the realist lure should be resisted on both historical and
philosophical grounds, letting the ‘pull of the mathematical technique’ reign insteadErI

Jumping another 1400 years, we arrive at Ptolemy’s heir Copernicus, whose compu-
tational style was similar to Ptolemy’s Alas, except for his outspoken realism, as far as
I know Copernicus did not explicitly analyze the relationship between pure and applied
mathematics in philosophical terms. In his successor Kepler one finds a pythagorean echo
(with a Judeo-Christian twist) to the effect that God is a geometer, who reveals himself
through his creation, and endowed the human mind with an ‘illumination’ through which
knowledge of the hidden geometric form of the cosmos is attainable

Though hardly a mathematical physicist in the sense I defined (if only because of
his quite elementary use of mathematics)@ Galilei was a pivotal figure in the history of
mathematical physics: while Ptolemy, Copernicus, and Kepler, though real mathematical
physicists in my sense, only applied mathematics to astronomy, Galilei’s innovation was
to apply it to physics on earth, and as such he outspokenly broke with Aristotle’s natural
philosophy. But even so, by itself his famous claim that ‘this grand book, the universe
(...) is written in the language of mathematics’ was far from revolutionary at the time: the
theme that God reveals himself through a second book, the book of nature, was a familiar
one, as was God’s use of geometry (cf. Plato’s Timaeus and Kepler). Galilei’s originality
as a philosopher of mathematical physics (now in the sense I did define: that is, reflecting
on its practice) is better displayed in the following passage from the Dialogue:

SALV. Do you know what does happen, Simplicio? Just as the calculator who wants
his calculations to deal with sugar, silk, and wool must discount the boxes, bales,

30See Kuhn (1957) for the decline of Ptolemy and the rise of Copernicus.

31See the discussion in §6|for the possible relevance of this work for the realism debate.

?They also shared an outspoken admiration for mathematics. For Ptolemy see Feke (2020).
Copernicus—or perhaps his publisher Johannes Petreius—even put Plato’s famous warning (in Greek) that
no one who is ignorant of geometry may enter (i.e., the Academy) on the title page of De Revolutionibus!

3See Jardine (1979), p. 170.

34See Blasjo (2023) for a devastating view of not just Galilei’s mathematical level but also his rigour.

10



and other packings, so the mathematical scientist (filosofo geometra), when he wants
to recognize in the concrete the effects which he has proved in the abstract, must
deduct the material hindrances, and if he is able to do so, I assure you that things
are in no less agreement than arithmetical computations. The errors, then, lie not in
the abstractness or concreteness, not in geometry or physics, but in a calculator who
does not know how to make a true accounting. Hence if you had a perfect sphere and
a perfect plane, even though they were material, you would have no doubt that they
touched in one point; and if it is impossible to have these, then it was quite beside
the purpose to say sphaera aenea non tangit in puncto. (Galilei, 1953, p. 241)

Galilei’s point, expressed as usual by his spokesman Salvatio, is that mathematical laws
are attempts to grasp the real world via idealizations thereof, necessitated by the idea that
the actual mathematical structure of the world is too complex to be grasped by our finite
intellect. Thus Galilei was not a platonist but a pythagorean (in the sense | deﬁned):@

Galilei’s claim that nature is written in the language of mathematics, far from being
a rhetorical statement or an unwarranted metaphysical conviction, is grounded in co-
herent ontological and epistemological arguments. In his works Galilei repeatedly
argues that mathematical entities are ontologically independent from us and that the
physical world has a mathematical structure. This structure is, however, too complex
to be fully grasped by our finite intellect, which is why we need to simplify physical
phenomena in order to be able to deal with them mathematically. What scholars have
regarded as an opposition between the abstract and the concrete, the mathematical
and the physical, was intended by Galilei as a distinction between what is mathemat-
ically simple, and hence easy for our intellect to grasp, and what is mathematically
complex and hence unknowable. (Palmerino, 2016, pp. 31-32)

In particular, Galilei’s distinction between what is real and what we are able to describe
via idealizations was an epistemological one. In response to the Aristotelian dilemma if
the physical world may instantiate perfect mathematical objects, Galilei seems to have
allowed this possibility, somewhat ambiguously arguing that on the one hand irregular
figures are more likely to occur (because there are far more of these), whereas on the
other hand the simplest figures (like perfect spheres), though fewer in number, are the
easiest to obtain. Alas, this issue remains unresolved, since Salvatio ends the topic by the
following comment: ‘let us waste no more time on frivolous and quite trivial altercations.’

3 Historical survey: Huygens to Hilbert

The ‘mathematization of the world picture’ which one might take to be an alternative
definition of mathematical physics, got into full swing after Galilei:

35See also McMullin (1985) and Finocchiaro (2010).

361n the wake of Dijksterhuis (1961), still magisterial, more recent accounts include Mahoney (2008),
Guicciardini (2013), and Van Dyck (2021). Roux (2010) discusses the mathematization of nature before
Galilei. The pivotal role of Stevin also deserves more attention (Dijksterhuis, 1970; Davids et al., 2020).
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In the era bounded by Galileo’s Dialogo of 1632 and Newton’s Principia of 1687,
science changed. Observation, even when performed with enough care to be called
experimentation, gave way to rigorous mathematical analysis as the primary ap-
proach to physical phenomena. Whereas Galileo aimed to instruct laymen about
his view of the world order by means of plausible arguments and analogies, only an
experienced mathematician could hope to understand the world picture envisioned by
the Principia. This mathematization of physics was a defining element of that intel-
lectual upheaval we call the Scientific Revolution, and the requirement, still imposed
today, that a theoretical physicist be an able mathematician stems from a tradition
that flowered in the seventeenth century. (Yoder, 1988, p. 1)

Horologium Oscillatorium by Huygens from 1673, which is the subject of Yoder’s book
just quoted from, is one of the masterpieces in the mathematization of the world pic-
ture published between Dialogo and Principia. But Huygens’s clearest statement on his
methodology comes from the preface of another major work, his Treatise on Light:

One finds in this subject a kind of demonstration which does not carry with it so high
a degree of certainty as that employed in geometry; and which differs distinctly from
the method employed by geometers in that they prove their propositions by well-
established and incontrovertible principles, while here principles are tested by the
inferences which are derivable from them. The nature of the subject permits of no
other treatment. It is possible, however, in this way to establish a probability which
is little short of certainty. This is the case when the consequences of the assumed
principles are in perfect accord with the observed phenomena, and especially when
these verifications are numerous; but above all when one employs the hypothesis to
predict new phenomena and finds his expectations realized. (Huygens, 1690)

Thus Huygens (against Newton, whom he had met in 1688) considers scientific theories
never certain but at best probable. He also stresses (this time against Descartes, and agree-
ing with Newton) the importance of matching mathematical physics with experiment and
observation. Finally, we see a hint at inferentialism as the basis of scientific modeling,
which will occupy us later on. On the other hand, typical philosophical questions con-
cerning the ontology of mathematical objects seem not to have occupied Huygens (at least
not in his published writings), whilst he seems to have taken the certainty of mathematical
derivations from clearly stated assumptions for granted. Nonetheless:

Huygens’ description of his method has a surprisingly modern ring. The insightful
formulation and ensuing application of the hypothetico-deductive method represents
the culmination of the I7th century quest to develop a justification for causal expla-
nations that do not obey the classical demonstrative mode. He has abandoned cer-
tainty in scientific explanations in favour of a high degree of probability—something
Newton would only grudgingly concede in his old age—and recognized how one may
validly demonstrate causes from their effects, or hypotheses from their consequences
(Shapiro, 1989, p. 225)

I will return to the transition from the classical demonstrative mode to the hypothetico-
deductive method in detail, after having discussed Newton’s Principia from 1687, in
which the former mode, along with mathematical physics itself, reached its all-time high.
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Principia starts with a Preface to the reader in which Newton states his philosophy
of mathematical physics, probably with a nod to Aristotle’s Physics quote above:

The description of right lines and circles, upon which geometry is founded, belongs
to mechanics. Geometry does not teach us to draw these lines, but requires them
to be drawn; for it requires that the learner should first be taught to describe these
accurately, before he enters upon geometry; then it shows how by these operations
problems may be solved. To describe right lines and circles are problems, but not
geometrical problems. The solution of these problems is required from mechanics;
and by geometry the use of them, when so solved, is shown; and it is the glory of
geometry that from those few principles, brought from without, it is able to produce
so many things. Therefore geometry is founded in mechanical practice. (Principia,
1687, Author’s Preface)

Here, Newton overcomes the discrepancy between on the one hand the perfection of math-
ematics via its location either in some platonic realm or in the mind, and on the other, the
imperfection of its realization in natural objects (combined with the unreliability of ob-
servation) by a direct identification of geometric objects with natural ones. From this
Preface and other texts it is clear that Newton attributes any kind of imperfection to the
‘practitioner’; as opposed to ‘the most perfect mechanic of all’ (that is, God).

Having said this, if anyone realized that planets did not follow exact elliptical trajecto-
ries it was Newton; first, the other planets disturb such exact solutions to the gravitational
two-body problem, and second, planets aren’t point particles. Newton was fully aware
of the idealized nature of his exact descriptions of geometric figures generated by mo-
tion; hence some of the deepest results in Principia try to overcome such idealizations.
In this context, the fourth in the list of ‘rules for the study of natural philosophy’ (regulae
philosophandi) that (after a brief introduction) open Book III of Principia reads:

In experimental philosophy we are to look upon propositions collected by general
induction from phaenomena as accurately or very nearly true, notwithstanding any
contrary hypotheses that may be imagined, till such time as other phaenomena occur,
by which they may either be made more accurate, or liable to exceptions.

Sometimes ‘more accurate’ can even mean ‘exact’, as in Newton’s results (proved in
Section 12 of Book I) to the effect that spherical bodies may be replaced by point particles
in so far as their gravitational force is concerned. All of this is part of a very delicate
interplay between inference from observations, mathematical models taken to be literal
and exact, and ensuing predictions (or retrodictions) of other observations (Smith, 2002).

So far, Newton’s philosophy of mathematics remains pythagorean, close to Galilei’s:
at least in so far as they are related to motion, his mathematical objects reside in nature.

37This Preface is discussed for example by Garrison (1987), Dear (1995), chapter 8; Domski (2003),
Pulte (2005), chapter III, Guicciardini (2009), Chapter 13, and Smeenk (2016). The standard modern
translation of Principia (Cohen & Whitman, 1999) merely notes that ‘Newton’s comparison and contrast
between the subject of rational or theoretical mechanics and practical mechanics was a common one at the
time’ (p. 381). I do not discuss the originality of Newton’s views; for example, his idea that geometric
figures arise from mechanical motion already occurs in the work of his teacher and predecessor Barrow.

38Notably De Gravitatione, see Domski (2017), and the General Scholium in Principia.
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Newton doesn’t “apply” mathematics 7o nature but studies the mathematics of nature, per-
haps with the unusual feature that geometric figures occurring in nature are seen dynami-
cally rather than statically—though even that wasn’t completely new: apart from its origin
in Barrow@ one may argue that even Euclid entertained the view that such figures are
“dynamically” generated by constructions with ruler and compass, which constructions
in early modern times prior to Newton had already become increasingly generalized@ the
difference is that for Newton the underlying “motion” was natural rather than man-made.

Newton’s philosophy of science in the Principia was also quite conservative: although
he followed (and trumped) Galilei and Huygens in their decisive use of mathematics in
physics or natural philosophy, and hence departed from Aristotle in that respect, otherwise
he structured and interpreted his book in accordance with the latter’s theory of demonstra-
tive sciences Pulte (2001, 2005) calls the Principia a “Euclidean system” in the sense
defined by Lakatos, i.e., a ‘deductive system with an indubitable truth-injection at the top
(a finite conjunction of axioms)—so that truth, flowing down from the top through the safe
truth-preserving channels of valid inferences, inundates the whole system.’@

Indeed, Book I of the Principia starts with a list of definitions, so as to emphasize its
mathematical character by analogy with Euclid’s Elements (which begins likewise). The
‘top’ in the sense of Lakatos is then given by Newton’s axiomata sive leges motus (axioms
or laws of motion) that follow the Definitions and the Scholium in Book I, that is, the fa-
mous three laws. The title of the chapter already shows that Newton conflates axioms and
laws of nature, and, indeed writing in the style of Euclid, regarded these axioms or laws
(and hence all their logical consequences) as true, albeit based on empirical observations
in Aristotelian fashion, as summarized above Thus Newton identifies basic laws of na-
ture with the axioms of a mathematical theory of nature, which is justified by the earlier
quote from his Preface to the effect that mathematics (or at least geometry) is in nature:

The material truth of axioms, inundating the whole system of propositions, stems
from mathematics itself. (Pulte, 2001, p. 70).

Newton’s real innovation in Principia was his introduction of forces into mechanics
in a way that far exceeded the everyday use of the word (although that was included),
culminating in the gravitational force. Forces differ from the motions they generate. Such
motions are geometric objects which Newton, as we have seen, places in nature (or rather:
in space and time) itself, without an independent platonic mathematical “existence” else-
where; they can be observed and measured. The “existence” of the gravitational force,

FSee Sepkoski (2013), Chapter 4, and Guicciardini (2009), §8.1.

40See e.g. Bos (1993, 2001).

41See Dear (1995), Pulte (2001, 2005), Smith (2002), and Ducheyne (2005), and references therein, for
Newton’s methodology including his rejection of the hypothetico-deductive method.

“2Quoted from Lakatos (1978), p. 28. Here (at least for Lakatos) the contrast is with “quasi-empirical
theories”, whose axioms or assumptions are not supposed to be true but conjectural, and in which (in the
spirit of Popper still endorsed by Lakatos at the time) ‘the logical flow is not the transmission of truth but
rather the retransmission of falsity—from special theorems at the bottom up towards the set of axioms’ (p.
28). See Paseau and Wrigley (2024) for a recent survey of the ‘Euclidean Programme’.

43This much is clear from his fourth rule for the study of natural philosophy, quoted above. It is here, in
my view, that Wittgenstein’s idea that mathematical propositions are ‘empirical regularities hardened into a
rule’ works particularly well, at least at the level of axioms. See below.
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on the other hand, can only be inferred from such motions, for which almost the en-
tire apparatus of Principia is required. Newton’s mathematical forces therefore created a
completely new situation, not only in (mathematical) physics but also in its philosophy:

Force, which Newton unquestionably conceived as an ontologically real entity, is not
an ‘object’ in the same sense as either the metaphysical essence, universal category,
or Platonic form of a triangle is. Neither, however, is it an artificial construction of
the mind, a ‘concept’ without a physical referent. Force is a distinctly new class of
ontological being: it is real without being tangible, and its effects are mathematically
quantifiable but its physical properties are unknown and perhaps unknowable. Al-
though Newton uses geometry (and analysis) to demonstrate the existence of gravity,
the force itself cannot be conceptualized as a simple geometrical object or construc-
tion, but rather requires the complicated series of geometrical demonstrations in the
Principia. (Sepkoski, 2013, p. 107-108)

Newton’s novel concept of force had two closely related consequences:

1. It paved the way for one of the main features of modern mathematical physics al-
ready mentioned, namely the use of mathematical objects that (unlike for example
geometric figures and numbers) are not instantiated in the natural world, at least not
in the immediate way geometric objects or numbers are. As already noted, in so far
as the philosophy of mathematical physics is concerned there is hardly any concep-
tual difference between Newton’s gravitational force and Einstein’s (Lorentzian)
metric in his theory of general relativity: each is just a mathematical construction.

2. It undermined the Euclidean, or, qua philosophy of (demonstrative) science, even
Aristotelian structure of Principia. Aristotle’s premisses and Euclid’s axioms were
supposed to be obviously and indubitably true. But Newtonian forces (especially
the gravitational one) could hardly claimed to be “true” in this sense, neither as
mathematical ingredients of nature (like motions) nor as more abstract objectsﬂ

The second point was acknowledged by Newton himself, since his fourth rule quoted
above admits that the ‘propositions collected by general induction from phaenomena’
(i.e., his premisses) may only be ‘very nearly true’, or even ‘liable to exceptions’. This
admission creates a tension within the Principia that Newton never overcame: he should
have admitted that his premisses were hypotheses, but this was blocked by his general
ideology described earlier, culminating in his famous words ‘hypotheses non fingo’ in
the General Scholium, through which he expressed simultaneously his animosity towards
Descartes and his allegiance to the Ancients. It took about 200 years to overcome this
tension As we shall see, the philosophy of mathematical physics since Newton’s time
may even be analysed as the interplay and eventual convergence of these two points. Of
course, it is a pleasure for me to repeat how far Huygens was ahead of Newton and his
time at least in this respect, as we saw in the quotation from his Treatise on Light.

44 Although Newton himself would emphatically deny this, the (perceived) lack of rigour in the mathe-
matical deductions in Principia also weakened its “Euclidean” structure.
45This point is developed by Pulte (2005), which I endorse. See also Stan (2017).
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Grosso modo, the mathematical physics of the eighteenth century centered around
(highly nontrivial and innovative!) rewritings and generalizations of Newton’s Principia.
First, its continental European reformulation in the style of Leibniz’s calculus by Euler
replaced Newton’s choice to cast the mathematics of his mechanics in a Euclidean mould.
But despite the strong philosophical flavour of Newton’s own justifications for his math-
ematical physics (and Leibniz’s primary status as a philosopher), the style of Euler and
his successors was quite pragmatic. Indeed, this style was neither too philosophical nor
even mathematically rigorous, so that the mathematical foundation of the calculus (be it
Newton’s or Leibniz’s or Euler’s) remained shaky throughout the eighteenth century.

Second, the invention of partial differential equations by D’ Alembert and Euler enor-
mously expanded the scope of mathematical physics, which could now describe the physics
of vibrations and waves, culminating in the new mathematical discipline of hydrody-
namics These fields were actually far less abstract and conceptually innovative than
Newton’s Principia, and, being easily visualizable and (by construction) applicable, ap-
parently did not lead to much philosophical reflection worth recalling (indeed, despite
introducing his critical philosophy almost fifty years affer the invention of partial differ-
ential equations and hydrodynamics, Kant still reflected on Newton entirely, see below).

Third, parallel to this development but somewhat at odds with it, mechanics itself was
further elaborated, using the new theory of partial differential equations (which as just
stated had been invented for different purposes). This culminated in the work of Lagrange
(1788), who returned to Newton’s axiomatic setting, but now with a totally non-obvious
starting point consisting of a variational principle for virtual velocities. Consequently,

Axioms become formal principles of organization rather than principles with empir-
ical content, and the whole system is held together by logical coherence rather than
by “material” truth. In Lagrange’s concept of mechanics, the higher calculus serves
as the uniting element in the deductive chains. (...)

Lagrange shaped the image of analytical mechanics as a model science for more than
half a century. His understanding of rational mechanics as a “self-sufficient” and for-
mal mathematical science, however, inevitably leads to a smouldering conflict with
the tradition meaning of axiom as a self-evident first proposition, which is neither
provable nor in need of a proof. (Pulte, 2009, p. 82)

In other words, compared to Newton, Lagrange’s axioms and mathematical language were
so abstract and remote from empirical observations that the axioms could hardly be called
obviously or indubitably true, and the language only served as means of formal deduction.
As described and explained in great detail by Pulte (2005), this put the nail in the coffin
of Newton’s “Euclidean” or even “Aristotelian” philosophy of mathematical physics as
described in the previous chapter: it brought the first of the two numbered points made at
the end of that chapter to a head, whilst resolving the second in such a way that:

‘Deductivity’ wins over conceptual foundation — or at least makes conceptual foun-
dation a problem which no longer requires discussion. (...) [T]he whole system is
held together by logical coherence rather than by material truth. (Pulte, 2001, p. 79)

46See Darrigol (2005) and and Gray (2021).
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Unlike the seventeenth century (in which admittedly mathematics, physics, and phi-
losophy were hardly separate activities and were often practiced together by the same
person), the dominant philosopher of mathematical physics in the eighteenth century was
not a mathematician but a philosopher, viz. Kant. I here restrict myself to his most
relevant work in this direction, namely Metaphysischen Anfangsgriinde der Naturwis-
senschaft from 1786translated as Metaphysical Foundations of Natural Science (Fried-
man, 20()4) As noted by Michael Friedman in his introduction to his translation,

[Flor the eighteenth century as a whole, the age of Enlightenment and the triumph
of Newtonianism, the recent culmination of the scientific revolution of the sixteenth
and seventeenth centuries in the work of Newton had elevated natural science to
previously undreamt of heights within the intellectual firmament. Thinkers as diverse
as Voltaire, Hume, and Kant himself all took the Newtonian achievement in natural
science as a model of the human intellect at its best, and as a model, more specifically,
for their own philosophical activity. (Friedman, 2004, p. vii)

Kant’s book contains a detailed (and controversial) technical development of Newtonian
physics, but for us his main contribution lies in its Preface, in which Kant specialized his
own critical philosophy (which dates from the same decade) to the case at hand

A rational doctrine of nature thus deserves the name of a natural science, only in case
the fundamental natural laws therein are cognized a priori, and are not mere laws of
experience. (...) All proper natural science therefore requires a pure part, on which
the apodictic certainty that reason seeks therein can be based. And because this pure
part is wholly different, in regard to its principles, from those that are merely empiri-
cal, it is also of the greatest utility to expound this part as far as possible in its entirety,
separated and wholly unmixed with the other part; indeed, in accordance with the na-
ture of the case it is an unavoidable duty with respect to method. This is necessary
in order that one may precisely determine what reason can accomplish for itself, and
where its power begins to require the assistance of principles of experience. Pure
rational cognition from mere concepts is called pure philosophy or metaphysics; by
contrast, that which grounds its cognition only on the construction of concepts, by
means of the presentation of the object in an a priori intuition, is called mathematics.
(...) Tassert (...) that in any special doctrine of nature there can be only as much
proper science as there is mathematics therein. (...) Now rational cognition through
construction of concepts is mathematical. Hence, although a pure philosophy of na-
ture in general, that is, that which investigates only what constitutes the concept of a
nature in general, may indeed be possible even without mathematics, a pure doctrine
of nature concerning determinate natural things (doctrine of body or doctrine of soul)
is only possible by means of mathematics. (Kant, 1786/Friedman, 2004, pp. 4-6)

Thus mathematics is the a priori tool that enables “proper” natural science (which cul-
minates in Newtonian mathematical physics); as such mathematics is ‘wholly different’

4TMostly untranslated secondary literature in German may be traced back from Pulte (2005).

48See also Harman (1983), Friedman (1992), Watkins and Stan (2023), and references therein.

“The Critique of Pure Reason is from 1781, the Critique of Practical Reason from 1788, and the
Critique of Judgement from 1790. The Metaphysical Foundations therefore lies in the middle of these.
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from the empirical’ and is something that ‘reason can accomplish for itself’. Elsewhere
in the book, Kant puts the concepts of (Euclidean) space and (Newtonian) force into this
a priori mathematical realm, although specific forces are empirical. Here is a summary:

In the eighteenth century, then, Newton’s physics was an unqualified success in both
mathematical and empirical terms, but there remained serious conceptual problems
concerning whether and how this brilliantly successful theory actually made rational
sense. Kant’s problem, accordingly, was not to sketch a program for a new mathe-
matical physics, but rather to explain how our actual mathematical physics, the math-
ematical physics of Newton, was itself possible in the first place. And his answer, in
the briefest possible terms, is that the concepts of space, time, motion, action, and
force do not function to describe a metaphysical realm of entities or “true causes”
lying behind the phenomena. Nor are they simply abstractions from our experience,
which we can then apply to the phenomena because we have already found them
there. Rather, such concepts as space, time, motion, action, and force are a priori
forms or constructions of our own, on the basis of which alone we can coherently or-
der the phenomena of nature into a unified and law governed spatiotemporal totality.
(Friedman, 2001, p. 10)

I follow Pulte (2005) in his interpretation of Kant’s edifice as an effort to salvage New-
ton’s “Euclidean system” underwriting Principia by relocating the ‘apodictic certainty’
of its mathematical laws (and their rigorously derived consequences) from the empirical
realm from which Newton extracted them 7o the allegedly unassailable (synthetic) a pri-
ori. Compared to the pythagorean views held by Newton and his predecessors, according
to which mathematical objects reside in nature and mathematical reasoning simply tracks
the flow of truth, removing mathematics from the natural realm and putting it into the
human mind was revolutionary. As I will explain in the course of this Element, with due
reinterpretation of the Kantian synthetic a priori, this move remains correct, as I see it.

The nineteenth century marked a transition from what Pulte (2009) calls the ‘classical
mathematical philosophy of nature’, i.e., Newton’s view that ‘natural philosophy can be
established on the basis of certain unshakable “axioms” of mechanics’, which was ‘de
facto regarded as epistemologically equivalent to Euclidean geometry by nearly all sci-
entists and philosophers of science’ (pp. 77, 95), fo a hypothetico-deductive view. Like
many major transitions, also this one had multiple roots, which partly intersected:

e As we saw, in the context of mechanics the transition in question was initiated
especially by the work of Lagrange in the late eighteenth century; further increase
of abstraction and formality at the cost of self-evidence in the work of C. Neumann,
Jacobi, Riemann, Hamilton, and others completed the process@

e Besides mechanics (which, if not seen as mathematics, co-evolved with it), physics
as a whole underwent spectacular innovations in the nineteenth century compared
to its Newtonian and Eulerian heritage. This introduced new degrees of abstrac-
tion beyond Newton’s concept of force as I already discussed, which, for different
reasons than Huygens’s, caused a further breakdown of the “Euclidean system”.

30See Liitzen (1995) for mathematical history and Pulte (2001, 2005, 2009) for philosophical analysis.
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In particular, in thermodynamics, the concept of energy was introduced initially
as heat or work, but gradually in all kinds of other forms, too. Though in mechanics
energy is closely related to Newtonian force, I already diagnosed the latter as the
first departure from the old Aristotelian (and indeed Newtonian) idea that mathe-
matics is part of nature; and potentials are more abstract, paving the way for all
kinds of further abstractions like the metric in Einstein’s theory of general relativ-
ity. Elsewhere in physics, energy is also simply a mathematical concept (eventually
formalized as the Hamiltonian). Second, electrodynamics and its underlying field
concept became a central part of physics, which despite Faraday’s visualizations
and Maxwell’s later mechanical models of the ether (see below) lacked both obvi-
ous reality and self-evident axioms—Maxwell’s equations were far from that.

In the eighteenth century the description of natural phenomena like the flow of flu-
ids or (a bit later, in 1822) of heat by partial differential equations (the latter due
to Fourier) was apparently seen as quite literal and truthful. But (looking at the
idealizations that were made in the derivation of these equations) it is obvious that
within a corpuscular basis of physics of the kind that increasingly found favour in
the nineteenth century, such mathematical descriptions were merely approximate@
At the same time, atoms and molecules were still invisible, mysterious, and hypo-
thetical, so that neither mathematics nor physics seemed to contain any kind of
obvious “truth”. But despite being cut off from physical “truth”, the mathematics
of partial differential equations still made sense by itself, and was deemed wor-
thy of study. This decoupling of mathematics from physical “truth” and even from
physics altogether is one of the routes via which mathematics became “pure”.

Driven by various factors, including making calculus and analysis rigorous for
reasons of both research and teaching (at the new universities), mathematics as a
whole (which included mechanics) underwent a transition from a “Euclidean” to
a hypothetico-deductive view. It gradually decoupled from physics, intuition, and
self-evident truth to became an independent discipline characterized by abstraction,
formal validity, and progress that largely came from reflections on mathematics
itselfﬁ The most famous ingredient of this development is undoubtedly the con-
struction of non-Euclidean geometries by Gauss, Bolyai, and Lobachevsky and the
closely related (but historically probably independent) invention of (metric) differ-
ential geometry by Riemann (1854), whose title was even: Uber die Hypothesen,
welche der Geometrie zu Grunde liegen (On the hypotheses which lie at te basis
of geometry, underlining added); but in fact fields like projective geometry, logic,
algebra, and analysis (co-) evolved and decoupled similarly from physics

31Or re-introduced, since there were some precursors. But its central role in physics dates back to the
nineteenth century and originated in thermodynamics. See e.g. Harman (1982) and Coppersmith (2015).
328ee e.g. Darrigol (2005), Gray (2021), and references therein. The next point is due to Maddy (2008).
33The reforms of the German education system around 1800, culminating in the foundation of the Uni-
versity of Berlin in 1809 (now called the Humboldt University), reinforced this development through its
idea that mathematics should be cultivated as an intellectual activity, free, like all academic discourse, from
applications, and carried out in Einsamkeit und Freiheit (i.e., solitude and freedom). See Jahnke (1990).
4See e.g. Jahnke (2003), Gray (2007, 2008), etc.
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e The discovery of non-Euclidean geometries challenged Kant’s a priori, at least in
so far as Euclidean geometry was supposed to be part of it

All this led to what is sometimes called the “modernist transformation” of mathemat-
ics centered around 1900@] after which mathematics had become autonomous: its former
“Euclidean” mode had been replaced by a hypothetical-deductive style, just as in physics.
The development of set theory and logic is a good illustration of this transformation, deep-
ened by its extensive interaction with philosophy through people like Frege and Russell,
but simultaneously embedded into mainstream mathematics by Hilbert and his school |
As is well known, around 1900 a combination of Cantor’s set theory, Frege’s program of
deriving arithmetic from logic, and Russell’s even more ambitious logicist program led
to Russell’s paradox and other signs of a foundational crisis like the need for Zermelo’s
controversial axiom of choice. This crisis was eventually resolved by the axiomatization
of both set theory and logic in the style of Hilbert. The result of this was that:

By the end of the first decade of our century, set theory had become a discipline
that had no recognizable link with its tradition logical neighbors: concepts, inten-
sions, and meanings. It had also be come a hypothetico-deductive discipline whose
main purpose was not find a priori or even merely true assumptions but to save the
mathematical phenomena. (Coffa, 1991, p. 114)

The importance of the outcome of this development can hardly be overemphasised: what
replaced sets (or classes) as real objects was a set of rules for working with them. The
same applied to logic: following his initial goal of finding a logical basis for mathematics
that was absolutely certain, even Russell eventually came to believe that its reliability:

is fundamentally the same as that of every other science. There is the same fallibility,
the same uncertainty, the same mixture of induction and deduction, and the same
necessity of appealing, in confirmation of principles, to the diffused agreement of
calculated results with observation. (Quoted by Coffa, 1991, p. 121)

For mathematical physics, the most remarkable feature of the modernist transforma-
tion is that this turn to abstraction preceded the most spectacular applications of mathe-
matics to physics, viz. the formulation of Einstein’s theory of general relativity in terms of
Riemannian geometry@ and the formulation of quantum mechanics in terms of complex
Hilbert spaces (and more generally in terms of functional analysis). Indeed, one might
naively expect that the decoupling of mathematics from physics that took shape in the
nineteenth century, as just described, would be the end of mathematical physics. Adding
to this apparent paradox, Hilbert, who championed the modernist transformation like no
other mathematician, played a pivotal role in both of these spectacular applicationsl?]

3See Coffa (1991), Friedman (2001), Pulte (2005), DiSalle (2006), Torretti (2012), and Stump (2015).

36 As far as I know this idea was introduced by Mehrtens (1990) and further developed by Gray (2008).

37See Coffa (1991), Grattan-Guinness (2000), Giaquinto (2002), and Ferreirés (2008).

3More precisely: its formulation in terms of what is called Lorentzian geometry, which involves a
change in the signature of the metric of Riemannian geometry. But this change was in itself contained in
Minkowski’s mathematical reformulation of Einstein’s earlier theory of special relativity. See also

3See Renn (2007) for Hilbert’s role in general relativity and Duncan & Janssen (2023) and Landsman
(2021) for his (and von Neumann’s) contributions to the mathematical development quantum theory.
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I defer a philosophical discussion of this problem to §6| below, but historically this
seems the right place to draw attention to the crucial ‘modernist’ concept of an implicit
definition, which was developed by Hilbert, Poincaré, Peano, Enriques, and others, and
was also taken up by Wittgenstein in his philosophy of language and by Schlick in the
philosophy of science (see below)ETI Here are two complementary formulations:

In my opinion, a concept can be fixed logically only by its relations to other concepts.
These relations, formulated in certain statements, I call axioms, thus arriving at the
view that axioms (perhaps together with propositions assigning names to concepts)
are the definitions of the concepts. (Hilbert to Frege, 22 September 1900; Gabriel et
al., 1980, p. 51)

It is, incidentally, very important that by merely looking at the little pieces of wood
I cannot see whether they are pawns, bishops, castles, etc. I cannot say, “This is
a pawn and such-and-such rules hold for this piece.” Rather, it is only the rules of
the game that define this piece. A pawn is the sum of the rules according to which
it moves (a square is a piece too), just as in language the rules of syntax define the
logical element of a word. (Wittgenstein, 1967, p. 134)

e The traditional idea was that the terms (or words) connected to each other by some
system of axioms in mathematics (or some set of rules for language games) are familiar
already before stating the axioms or rules, as they refer to things previously defined or
known, along with the Aristotelian claim that axioms are self-evident and true.

e The new idea is that in the crucial case of indefinables these terms are non-referential
but instead are given meaning by the axioms, which (like the rules of chess), thereby
also lose their self-evident truth (and indeed their truth altogether)F_TI It should be clear
from the foregoing historical account of the transition from the Euclidean model to the
hypothetico-deductive model that implicit definitions are indispensible to this transition.

In particular, if the objects of the theories of mathematical physics are no longer supposed
to be “there” in the natural world, then they must be purely theoretical entities whose use
is determined by the theories in which they appear and whose connection to the world
remains to be developed. Likewise, these theories cannot reasonably held to be “true”.
The logical positivist, who picked this up initially through Schlick (who knew Hilbert’s
work and also talked to Wittgenstein around the time the latter returned to philosophy
from 1929 onwards)@ tried to define this connection via so-called coordination proce-
dures, but their efforts are widely taken to have been in Vain Nonetheless, I will return
to the logical positivists and especially to Wittgenstein for inspiration, and after a recon-
ceptualization of the a priori will try to make this connections via surrogative inferences.

%0For more information see Giovannini and Schiemer (2021), Sereni (2024), and Landsman (2025) .

61See also Landsman (2025) and references therein.

©2See Wittgenstein (1967) for his discussions with Schlick, whose analysis of implicit definitions may
be found in his Allgemeine Erkenntnislehre (Schlick, 1918/2009). See also Coffa (1991) and Stump (2015).

931n a delightful televised discussion with Bryan Magee in 1977 on ‘Logical Positivism and its Legacy’,
Alfred Ayer replied to Magee’s question what he regarded as the main shortcomings of logical positivism:
‘I suppose the greatest defect is that nearly all of it was false.” Quoted by Edmonds (2020), p. 259. See
https://www.youtube.com/watch?v=x2SrXueVAos at 34:19.
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In any case, with hindsight we see that mathematics could be successfully applied to
modern physics not despite but because of the increased abstraction of mathematics and
its apparent decoupling from physics as described above. The identification of mathemat-
ical concepts with natural kinds may initially have launched the idea and the possibility
of mathematical physics, but such identifications simultaneously narrowed the scope of
the mathematics in question to the specific application that involved it (and for which is
was often invented). This made it difficult to recognize different applications of the same
piece of mathematics, and also made it even more tricky to apply areas of mathematics
that were developed for different purposes, especially if these were internal to mathemat-
ics. Overcoming the connection between mathematics and reality or natural kinds made
room for entirely new applications, such as general relativity and quantum theory.

4 The a priori in mathematical physics

I now try to use the previous insights from history to formulate a philosophy of mathe-
matical physics. I first update the a priori. It is of course well known that both special and
general relativity—predated by the non-Euclidean geometries of the nineteenth century, as
we already saw—suggested that not only Euclidean geometry but also Newtonian physics
was no longer the last word, so that nothing seemed to be left of Kant’s a priori (at least
in so far as physics was concerned). This, as well as Hilbert’s work on axiomatization
and implicit definition, led the logical positivists like Reichenbach, Schlick, Carnap, Cas-
sirer, Ayer, (C.1.) Lewis, and Pap, to various attempts to rescue at least one aspect of the
a priori, namely its constitutive role in shaping knowledge and meaning

In particular, Reichenbach (1920) argued that Kant’s relocation of mathematics was
essentially correct, but was executed far too rigidly because of his insistence on the very
specific form this a priori mathematics and mathematical physics was supposed to take:
Kant’s adoption of Euclidean geometry as well as his restriction to Newtonian forces and
laws of motion have clearly not stood the test of time in both mathematics and physics,
respectively. This led Reichenbach, and in his wake Friedman (2001, 2002), to propose
and revive the idea of relativizing the Kantian a priori to a particular historical stage in
the development of science. This neo-Kantian development pushed back at least some
mathematics and physics to the empirical side. What, then, is the right balance between
the a priori and the a posteriori? Though he was motivated by mathematics rather than
physics (and wasn’t a logical positivist!), a key point was made by Wittgenstein in 1939:

It is as if we had hardened the empirical propositions into a rule@ And now we
have, not an hypothesis that gets tested by experience, but a paradigm with which
experience is compared and judged. (Wittgenstein, 1968, §V1.22b)

In other words, heuristic regularities or other quantifiable features of the natural world
cross the line from the a posteriori into the formal a priori and thus become rules.

64See e.g. Coffa (1991), Friedman (1999, 2001), Ryckman (2005), DiSalle (2006), and Stump (2015).
5 Similarly, according to Poincaré, ‘empirical generalization are exalted to become a postulate’. See
DiSalle (2006), p. 84, as well as DiSalle (2002), passim.
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To do justice to modern mathematical physics one should interpret Wittgenstein’s ‘em-
pirical propositions’ much more widely than what he probably had in mind himself, more
or less along the line of Hilbert’s program of axiomatization (initially of mathematics, and
then extended to physics via his sixth problem)@ See also below. Its scope then ranges
from the simplest (“Humean”) case of empirical regularities turned into “laws of nature”
(such as Boyle’s ideal gas law or the law of Buys-Ballot) to the multi-step process leading
from the empirical study of free fall and planetary motion via the equivalence principle to
Einstein’s field equations for general relativity; but the point is always that at some stage
‘soft’ heuristic procedures and/or empirical conclusions are ‘hardened’ into rules.

Similarly, not just in his (earlier) philosophy of mathematics but also in the Philosoph-
ical Investigations (Wittgenstein, 2009) one of the multiple roles of language games also
lies in their being “hardened” linguistic practices. My strategy will be to turn this aspect
of Wittgenstein’s philosophy of language into a similar relationship between mathemat-
ical theories or models of physics and natural phenomena, respectively This analogy
seems in the spirit of Wittgenstein himself, who in his middle period started applying
ideas from his philosophy of mathematics to the philosophy of language@ for example,

But if we had to name anything which is the life of the sign, we should have to say
that it was its use. (Wittgenstein, 1958, p. 4)

This led to (late) Wittgenstein’s famous “meaning is use” philosophy of language, which
is a central theme of his Philosophical Investigations. 1t is highlighted in a paragraph like:

§43. For a large class of cases of the employment of the word “meaning” —though
not for all —this word can be explained in this way: the meaning of a word is its use
in the language.

For our understanding of the a priori in mathematical physics, the argument starting with
the following paragraph and leading up to §108 (quoted below) is of central importance:

§97. Thinking is surrounded by a nimbus. — Its essence, logic, presents an order:
namely, the a priori order of the world; that is, the order of possibilities, which the
world and thinking must have in common. But this order, it seems, must be utterly
simple. 1t is prior to all experience, must run through all experience; no empirical
cloudiness or uncertainty may attach to it. — It must rather be of the purest crystal.
But this crystal does not appear as an abstraction, but as something concrete, indeed,
as the most concrete, as it were the hardest thing there is (.. .)

As we shall see, theories of mathematical physics like general relativity or quantum me-
chanics play a similar a priori role. Wittgenstein then warns against a misconception we
are ‘prone to’, namely that the ‘ideal’ of what he aptly calls the ‘crystalline purity’ of logic
is part of natural language and hence is to be found in reality; but in fact, natural language

%6See Corry (2004, 2018); also cf. Landsman and Singh (2025) for the relationship between the ideas of
Hilbert and Wittgenstein on rule following, games, and axiomatization.

7The focus on the a priori is not obvious from the Philosophical Investigations, but, as explained by
Coffa (1991), chapter 14, as well as by Steiner (2009), it is quite prominent in middle Wittgenstein.

%8See primarily Kienzler (1997), and also Gerrard (1996), Miihlholzer (2010), and Kuusela (2019).
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is too complicated for that. He also warns against bending natural language so that it
approaches this ideal, for language has to be taken as it is (like mathematics). Neither
should logic be bent so as to accord with natural language, since in that case logic would
become empirical and we would compromise its rigorous and clear rules. Wittgenstein’s
remarkable solution of this dilemma consist of two steps. First, he ‘turn[s] the enquiry
around’ via a relocation of the ‘crystalline purity’ of logic:

§108a. We see that what we call “proposition”, “language”, has not the formal unity
that I imagined, but is a family of structures more or less akin to one another. — But
what becomes of logic now? Its rigour seems to be giving way here. But in that case
doesn’t logic altogether disappear? For how can logic lose its rigour? Of course not
by our bargaining any of its rigour out of it. The preconception of crystalline purity
can only be removed by turning our whole inquiry around. (...)

Hence, analogously to Kant’s relocation of logic and mathematics from the phenomenal
world to the a priori, Wittgenstein relocates the crystalline purity of logic from language,
where it doesn’t belong, to language games, which in his late philosophy arguably play the
role that logic (vastly generalized) played in the Tractatus@ It is also worth quoting the
end of this paragraph, since, as I see it, applying its argument to the relationship between
physical theories and natural phenomena instead of Wittgenstein’s relationship between
(rule-governed) languages games and natural languages, it makes the anti-realist point:

§108cd. We’re talking about the spatial and temporal phenomenon of language, not
about some non-spatial, atemporal non-entity. (...) But we talk about it as we do
about the pieces in chess when we are stating the rules for their moves, not describing
their physical properties. The question “What is a word really?” is analogous to
“What is a piece in chess?”

Second, Wittgenstein adds an important clarification to the effect that language games
(or at least the ‘clear and simple ones’, words reflecting his earlier ‘crystalline purity’)
provide benchmarks or yardsticks with which some linguistic practice can be compared

§81. F. P. Ramsey once emphasized in conversation with me that logic was a ‘norma-
tive science’. I do not know exactly what idea he had in mind, but it was doubtless
closely related to one that dawned on me only later: namely, that in philosophy we
often compare the use of words with games, calculi with fixed rules, but cannot say
that someone who is using language must be playing such a game. — But if someone
says that our languages only approximate to such calculi, he is standing on the very
brink of a misunderstanding. (...)

§130. Our clear and simple language-games are not preliminary studies for a future
regimentation of language as it were, first approximations, ignoring friction and air
resistance. Rather, the language games stand there as objects of comparison which,
through similarities and dissimilarities, are meant to throw light on features of our
language.

%9See Railton (2000) and Kuusela (2019), §4.4 for this highly non-trivial observation.

"OThe German original ‘MaBstab’ may be superior to the English translation ‘yardstick’ in that the
original better expresses the dual character of the word. The most famous section in the Philosophical
Investigations about yardsticks is §50 about the standard metre in Paris, but I find it pretty confusing.
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§131. For we can avoid unfairness or vacuity in our assertions only by presenting the
model as what it is, as an object of comparison, so to speak as a yardstick; not as a
preconception to which reality must correspond. (The dogmatism into which we fall
so easily in doing philosophy.)

Thus, consistent with Wittgenstein’s earlier remarks that we ‘harden empirical regularities
into rules’, the a priori is so to speak fed by the a posteriori, eats it, and finally, in its
digested (‘hardened’) state, has become independent of the empirical realm, to which it
nonetheless still relates by providing yardsticks or objects of comparison through which
this realm may be studied (more details on this feedback process are in the next chapter).
As I see it, this procedure resonates with, and provides ample philosophical back-
ground for, Hilbert’s views on the role of mathematics in the physical sciences:

Mathematics has a two-fold task: On the one hand, it is necessary to develop the
systems of relations and examine their logical consequences, as happens in purely
mathematical disciplines. This is the progressive task of mathematics. On the other
hand, it is important to give the theories formed on the basis of experience a firmer
structure and a basis that is as simple as possible. For this it is necessary to clearly
work out the prerequisites and to differentiate exactly what is an assumption and what
is a logical conclusion. In this way, one gains clarity about all unconsciously made
assumptions, and one recognizes the significance of the various assumptions, so that
one can overlook what modifications will arise if one or the other of these assump-
tions has to be eliminated. This is the regressive task of mathematics (Hilbert,
1919/1992, pp. 17-18, translation by the author).

Hilbert also stressed that axioms are by no means cast in stone, but instead are liable to
change, and especially in physics should be modified time and again:

[In] physical theories the elimination of contradictions that arise will always have
to be done by changing the choice of axioms and the difficulty lies in making the
selection in such a way that all observed physical laws are logical consequences of
the selected axioms. (Hilbert, 1918, p. 411)

This again coheres with a Wittgensteinian theme, namely the dual nature of yardsticks
(provided by language games in his philosophy of language; provided by models of the-
ories of mathematical physics in my philosophy of mathematical physics, as will be ex-
plained in §5| below). Namely, yardsticks may be either normative or empirical A
splendid example, due to Wittgenstein himself in the early 1930s, covers both

71See also Muller (2004), Miihlhélzer (2008, 2010, 2012), Friederich (2011), and Landsman & Singh
(2025) for the intellectual relationship between Hilbert and Wittgenstein in the relevant context.

72 As pointed out to me by Wesley Wrigley, what is still missing here (and elsewhere) is an account of
informal mathematics, shadowed in my own approach by the lack of a ‘philosophy of theoretical physics’.
73Indeed, Hilbert published no fewer than seven different editions of his Grundlagen der Geometrie!

74Similar terminology would be grammatical versus exploratory. Characterizing and distinguishing
these two categories of rules in general is a challenge that also Carnap and the other logical positivists
faced; in representational theories of language this would be the distinction between non-descriptive and
descriptive sentences. Price (2013) calls the existence of this distinction the bifurcation thesis.

3Source: Waismann and Baker (2003), p. 55. Quoted in part by Coffa (1991), p. 265.
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Can one read off the geometry of a cube from a wooden cube or from a picture of a
cube? (...) Does geometry talk about cubes? Does it say that the shape ‘cube’ has
certain properties? What could be called a property of the shape ‘cube’? Surely what
a true proposition says of it, hence, say, that a house is cube-shaped. (...) In this way
geometry says nothing about cubes, but rather constitutes the meaning of the word
‘cube’, etc. Geometry tells us, e.g., that the edges of a cube are equal in length, and
nothing seems more tempting than a confusion of the grammar of this proposition
with that of the proposition “The sides of this wooden cube are equal in length’. And
yet the one is an arbitrary grammatical rule, the other an empirical proposition

Likewise, in the context of mathematical physics, for example the Standard Model of
high-energy physics (to which I will return) has a dual use: a new particle collider or
experiment may by calibrated via uncontroversial fragments of the model, which is then
in its normative mode. But the goal of the subsequent experiments would be to use the
model in its empirical mode, ready to be tested and hopefully falsified. Wittgenstein’s last
work, On Certainty, discusses the balance between these two aspects of rules, e.g.:

The mythology may change back into a state of flux, the river-bed of thoughts may
shift. But I distinguish between the movement of the waters on the river-bed and the
shift of the bed itself; though there is not a sharp division of the one from the other.
(Wittgenstein, 1969, §97)

Wittgensteins (implicit) concept of normativity was developed by Brandom (1994,
2001), who inherits the (generally) non-representational character of language from the
Philosophical Investigations, so that meaning (via reference) does not determine use, but
rule-governed use determines meaning. But Brandom insists that such rules be inferential,
effectively generalizing Gentzen’s proof system of Natural Deduction in logic, where
each logical symbol has an introduction rule and an elimination rule. These are seen as
rules of inference for its use, from which its ‘usual’ meaning is supposed to follow

Logic is also an excellent example of the dual nature of yardsticks and the idea of
‘hardening of empirical regularities into rules’: the idea is that for various reasons styles
of argumentation and pursuation arose in political, philosophical, and mathematical dis-
course became widely adopted, and eventually crossed the line from the a posteriori
into the a priori and hence became rules of inference. These were on the one hand norma-
tive, as exemplified by the millennia-long dominance of both Aristotle’s explicitly stated
syllogistic rules of deduction and Euclid’s largely implicit rules of mathematical proof.

76Similarly, my earlier quotation from Wittgenstein (1968), i.e., his Remarks on the Foundations of
Mathematics, continues as follows: ‘For one judgment is: “He worked out 25 x 25, was attentive and
conscientious in doing so and made it 615”; and another: “He worked out 25 x 25 and got 615 out instead
of 625.” But don’t the two judgments come to the same thing in the end? The arithmetical proposition is not
the empirical proposition: “When I do this, I get this”—where the criterion for my doing this is not supposed
to be what results from it.” (Wittgenstein, 1968, §V1.22¢cd)

"TFor example, the introduction rule for the implication sign — states that A — B follows if from A
one can infer B; its elimination rule is the modus ponens (i.e., A and A — B imply B. Since inferring B
from A involves other rules, rules of inference form a network that can only be used as a whole. See also
Garson (2013), Peregrin (2014, 2020), Warren (2020), Povich (2024), and Incurvati and Schléder (2023).
Admittedly, a fully inferentialist interpretation of mathematics remains a project under development.

78Szab6 (1978) and Dutilh Novaes (2020) convincingly speculate about the origins of these rules.
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For example, in normative mode the use of modus ponens would simply mean that the
user has correctly understood the logical symbol — for implication But on the other
hand the very tension between these the Aristotelian and the Euclidean systems,@ as well
as later developments in mathematics calling for new logical systems (culminating in first-
order logic as developed by Frege, Russell, and Hilbert, followed by modal logic, etc.)
showed that the allegedly a priori rules of logical can actually be tested against (mathe-
matical) experience and be changed accordingly In a nutshell, Brandom then extends
the attribution of meaning through inferential use from logic to languagelg_fl
But what is status of those rules, and hence of the a priori?

Another approach, which we may identify with Dewey and the later Wittgensteinff]
begins with inference conceived as a social practice, whose component performances
must answer originally not to an objective reality but to communal norms. Here
the appropriateness of an inference consists entirely in what the community whose
inferential practices are in question is willing to approve, that is to treat or respond
to as in accord with their practices. (Brandom, 2019, p. 17)

This applies at least to mathematics, where it explains three key aspects of its practice:@

(1) Individual fallibility, to the effect that ‘individuals can have perfectly good knowl-
edge about the objective properties of things and yet be wrong in their judgements’;

(2) Collective infallibility, in the sense that ‘it is not the case that everyone could be
wrong in this way (...) because the collective generates the norms that determine
exactly what, at any given time, these properties actually are.’

(3) Norm-guided property recalibration, in that ‘the constituting norms of the collective
evolve or change as the constituting norms of the collective evolve or change’ where
‘different factors will affect the stability of such norms, including whether stability
itself is considered an asset or a liability’. (McGeer, 2018, 303-304)

In sum, individual fallibility can be identified right because of collective infallibility,
which on the other hand is a dynamical notion, being subject to recalibration. For ex-
ample, standards of proof have not only changed enormously over the 2500 years that
(axiomatic-deductive) mathematics has existed so far—compare Euclid with Euler or Fourier,
and then with Hilbert; as recalled by von Neumann (1947), they even changed three times
in the first half of the twentieth century! Having recalled the different ideas of proof held
by Brouwer, Weyl, and Hilbert, he summarizes the situation as follows:

Wittgenstein’s famous ‘hardness of the logical must’ just reflects this a priori status of logic. See
Wittgenstein (1969), Part I, §121 and Part VI, §49, as well as Kuusela (2019) and Bangu (2021, 2026).

80This tension led to the so-called Quaestio de Certitudine Mathematicarum (Mancosu, 1999).

81See for example Ferreirés (2001) and Haaparanta (2009).

82Brandom eventually even makes purely logical implications (such as A — A, which are valid for any
A) derivative of material implications (such as A — B provided the actual content of A and B validates this).

83 Brandom’s attribution of these ideas to Wittgenstein is disputed by McDowell (2019).

84McGeer (2018) wrote this in the different context of responsible agency, but in my view the same
points apply to the mathematical sciences, even her points (not quoted here) about the role of fashion.
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I know myself how humiliatingly easily my own views regarding the absolute math-
ematical truth changed during this episode, and how they changed three times in
succession! I hope that the above three examples illustrate one-half of my thesis suf-
ficiently well-that much of the best mathematical inspiration comes from experience
and that it is hardly possible to believe in the existence of an absolute, immutable
concept of mathematical rigour, dissociated from all human experience. I am trying
to take a very low-brow attitude on this matter. Whatever philosophical or epistemo-
logical preferences anyone may have in this respect, the mathematical fraternities’
actual experiences with its subject give little support to the assumption of the exis-
tence of an a priori concept of mathematical rigour. (von Neumann, 1947/1961, p.
6)

Likewise, as we saw in the historical survey above, even the very concept of physics, and

hence of mathematical physics, changed dramatically from Aristotle to Galilei, then from

Galilei to Newton, and then again, during the 19th-century transition to modern physics.
From this history, I draw some lessons (see also the discussion on realism in §6)):

1. Mathematics (though man-made!) should not compromise. Its exactness and rigour
were crucial for the succes of Newton’s and all subsequent mathematical physics.

2. But we cannot make nature more exact than it is. The history of science shows that:

(a) what was once believed to be exact in nature (such as Newton’s laws—many
make a similar misjudgment of quantum theory) was in fact only approximate;

(b) Replacements of flawed attempts to give exact mathematical descriptions of
nature often use very different principles (which fail, too, now or later).

3. This makes it hard to believe that nature (as opposed to mathematics) is governed
by (exact) rules; and even if it is, that we will ever find them. Thus leaving both
mathematics and nature as they are, one ‘turns the whole enquiry around’: success-
ful theories of mathematical physics like Newton’s mechanics, Einstein’s general
relativity, or von Neumann’s quantum mechanics are not located in nature but are
a priori rules. These are meaning-constitutive for their associated models, which
in turn are the Wittgensteinian yardsticks to be held against nature. Hence (pace
Newton) their crystalline purity in the form of exactness and rigour is not a prop-
erty of nature but of our mode of examination. It is this relocation of mathematics
in the study of physics that resolves the apparent tension between mathematics as a
man-made practice and physics as a description of some man-independent reality.

4. Hence Wittgenstein’s yardstick idea solves (or rather obviates) our opening enigma
that mathematics cannot be applicable to nature, although in fact it is. This problem
may be summarized by the original view that created it: Plato found fault with the
natural world against the perfection of mathematics, believing in the ultimate reality
of the latter—which creates a problem for mathematical physics. But a mathematical
model of nature need not (and cannot) match nature: it is not a description thereof,
and hence there is no need to overcome the mismatch—correctly diagnosed by Plato—
by inventing a hypothetical ineffable realm, since the mismatch is just what one
would expect if mathematics does not describe but merely compares and measures.

28



To close this chapter I now describe a priori I am talking about in some more detail. It
is clearly not the Kantian one, if only because his distinct analytic a priori and synthetic a
priori has now been replaced by the single concept of the hypothetical a priori. 1 use what
Warren (2022) calls a ‘meaning-based concept of the a priori’, which is both independent
of experience and meaning-constitutive. The first property is subtle, since as we have seen
in mathematical physics the a priori is grounded in experience. But the Wittgensteinian
move was to ‘harden’ such experience into rules. The second property of being meaning-
constitutive follows if meaning is identified with use, which in turn is determined by rules;
which in turn form the grammar of a specific language game defining the a priori.

This kind of a priori is often connected to conventionalism@ But instead of the
version of conventionalism in which ‘certain truths are merely reflections of what we
mean—or which concepts we employ’ (Warren, 2024, p. 28), where axioms constrain (or
determine) the meaning of the sentences by the ‘free stipulation of the truth’ of these sen-
tences, I endorse the version that does not attribute any kind of truth to the conventions
that form the a priori @ Furthermore, even if the rules behind the theories of mathematical
physics are conventional, like choosing a particular language (game), these conventions
are far from arbitrary: 1 follow Hilbert in claiming that theories of mathematical physics
arise via the axiomatization of sufficiently mature informal theories of either (theoreti-
cal) physics or mathematics itself. Both to avoid confusion between the various kinds
of conventionalism on the market, and to relate the terminology on the transition from
the ‘Euclidean’ to the ‘hypothetico-deductive’ model reviewed in the previous chapter, I
therefore prefer to call a priori rules or theories ‘hypothetical” rather than ‘conventional’.

Just as mathematical theories in general implicitly define the mathematical concepts
appearing therein (such as spacetime) through their axioms, theories of mathematical
physics (such as general relativity) implicitly define the physical concepts appearing
therein (such as spacetime) through their stipulations (assuming the mathematical con-
cepts, such as a manifold and a metric, are understood via the axioms of the underlying
mathematical framework). Take a highlight of the famous Frege—Hilbert opposition:

You [Frege] say further: ‘The explanations in sect. 1 are apparently of a very different
kind, for here the meanings of the words “point”, “line”, ...are not given, but are
assumed to be known in advance.” This is apparently where the cardinal point of
the misunderstanding lies. I do not want to assume anything as known in advance;
I regard [all the axioms of groups I to V] in sect. 1 as the definition of the concepts
point, line, plane. (Hilbert to Frege, 29 December, 1899; Gabriel et al., 1980, p. 39)

Hence it is as if Frege would insist that concepts like space and time are understood prior
to the establishment of a theory like general relativity in which they appear, whereas
Hilbert (whom I obviously side with) would define these concepts by general relativity@

85See e.g. Ben-Menahem (2006), Stump (2015), Warren (2022), and Povich (2024).

8In this, I follow Ben-Menahem (2006, p. 140): ‘Rather than conceiving of the axioms as freely postu-
lated truths, we should think of them as hypothetical conditions (...) The axioms are considered to bestow
meaning on the implicitly defined terms in the sense that they fix a range of possible interpretations. On
this construal, there is no postulation of truth by convention.’

87This difference pervades their entire correspondence (Gabriel et al., 1980) and e.g. Blanchette (2018).

8This seems similar to what is called spacetime functionalism, especially in what Knox and Wallace

29



5 Models

[The] Scottish commonsense tradition emphasized the relativity of knowledge: the
idea that knowledge of an object always emerges from a comparison of that object
with something else. (Suarez, 2024, p. 22)

I now discuss the nature of models, which in my approach are the yardsticks to be held
against nature (see below how this is done). Historically, the rise of models since the
(late) nineteenth century has been well documented, both in general@ and in the case of
mathematical models to which I can restrict myself@ Compared to the general case, |
therefore do not need to discuss mechanical models, scale models, maps, paintings, etc.
Neither will I discuss topics like the ‘syntactic view’ (also called the ‘received view’),
or the ‘semantic view’. Among the general objections to these Viewsml especially note
that in mathematical physics practice no theory or model of mathematical physics tends
to be formulated in such terms. For example, general relativity is rarely discussed as
a logical theory, except by philosophers; in mathematical physics this theory is stated
in terms of standard differential geometry, partial differential equations, and topology.
Perhaps the semantic view comes closer to this practice, in focusing on spacetimes with
a Lorentzian metric satisfying the Einstein equations for given matter content, but even
so, few mathematical physicists would say that this class of models defines the theory: if
anything it is the Einstein equations themselves, rather than their solutions, that ‘define’
general relativity. Likewise for quantum mechanics and quantum field theory, seen as
mathematical frameworks within which physical systems can be formulated as models.
The different roles of theories and models are a corollary of the previous chapter:

e Theories define an area of mathematics (such as Euclidean geometry or group the-
ory) or mathematical physics (such as general relativity, quantum mechanics, or
statistical mechanics), the latter often combining some of the former. Using the
idea of implicit definition, theories define the meaning of their own concepts, such
as space and time, evolution, determinism, randomness, etc., as well as for example
black holes or elementary particles. Thus theories are meaning-constitutive.

e Models are solutions or examples of such theories, construed broadly—my concept
of a mathematical model is quite pragmatic: it may (ideally) consist of exact solu-
tions of the fundamental equations of the theory, or, if this is impossible in practice,
of approximate solutions thereof (including numerical ones that may even be shown
graphically), or of exact solutions of approximations to these equations, or even of
approximate solutions of approximate equations suggested by the theory. But in all
these cases the meaning of everything should have been determined already:

’A model uses the conceptual framework of the theory it is a model of. ‘

(2023) call its ‘constitutive’ form. The origins of this idea in the logical positivist tradition (as opposed to
the philosophy of mind usually emphasized) are worth exploring; see also Butterfield and Gomes (2023).
89Cf. van Fraassen (2008), Morrison (2015), de Regt (2017), Elgin (2017), Frigg (2022), Suérez (2024).
90See for example Blanchette (2017), Ferreirds (2022), Friedman & Krauthausen (2022).
91Cf. Morrison (2007, 2015), Halvorson (2012), Frigg (2022), Wallace (2022, 2024), and Sudrez (2024).
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Thus models are neither referential nor empirical, yet they are what makes some theory
empirically relevant. This approach may be benchmarked against the five ‘distinguishing
characteristics of a theoretical model’ listed by Redhead (1980):

(1) Itis a set of assumptions about some object or system.

(2) These assumptions attribute an inner structure, composition or mechanism,
which manifests itself in other properties exhibited by the object or system.

(3) These assumptions are treated as a simplified approximation useful for certain
purposes.

(4) The model is proposed in the framework of some more basic theory or theories.

(5) The model may display an analogy between the object or system described and
some other object or system.

Of these, only (4) is essential in my approach; the others may or may not apply. But if it
applies I look at (3) in a very different way from Redhead, who says that (3) reveals the
difference between theories and theoretical models, in that ‘we believe our theories to be
true’, whereas ‘a theoretical model is definitely believed to be false.” I concur with the
latter: as eloquently explained by Elgin, models are nothing but ‘felicitous falsehoods’:

Modern science is one of humanity’s greatest epistemic achievements. It constitutes
a rich, variegated understanding of the natural world. Epistemology could read-
ily accommodate its extraordinary success if that understanding were expressed in
accurate representations of the phenomena. But it is not. Science couches its deliv-
erances in models that are purposefully inaccurate —models that simplify, augment,
exaggerate and/or distort. (...) [the] point is not just that contemporary science con-
tains idealized models that are strictly false; rather, science consists of them. (...)
models enable us to understand reality in ways that we would be unable to if we
restricted ourselves to the unvarnished truth. The point is not just that the features
that a model skirts can permissibly be neglected. They ought to be neglected. Too
much information occludes patterns that figure in an understanding of the phenom-
ena. The regularities a model reveals are real and informative. But many of them
show up only under idealizing assumptions. (...) Effective models are what I have
called felicitous falsehoods (Elgin, 2017).

They are (typically) representations of phenomena; that is, they typically have tar-
gets. But they purposefully misrepresent those targets. Although some, being non-
propositional, are not strictly false, I label them falsehoods because they misrepre-
sent. I consider them felicitous because their inaccuracies are epistemically fruitful;
they are not defects. The falsehoods are inaccurate in ways that enable them to non-
accidentally provide epistemic access to obscure or occluded aspects of their targets.
Not despite, but because of their inaccuracy, they afford the access that they do.
(Elgin, 2022, pp. 7-12)

But—and here lies the difference with Redhead and other realists— the same applies to all
theories! The history of mathematical physics as reviewed earlier in this Element sug-
gests that all its great theories, from Principia to general relativity and quantum (field)
theory, are merely mathematical constructions, whose models are ‘felicitous falsehoods’;
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although the term ‘falsehood’ is misleading in the sense that in my approach neither the-
ories nor their models even have a truth value. As to theories, this is a corollary of my
specific Wittgensteinian interpretation of theories (i.e., as empirical regularities hardened
into rules), as well as of the a priori, as explained in the previous chapterP_ZI Models, on
the other hand, float between the a priori and the a posteriori and as such lack truth values
themselves. However, there is some room for truth: that a model has a certain property
(such as the possibility of superluminal communication) is a matter of fact and hence may
be deemed true, although neither the model nor this property by itself have truth values.
This relative concept of truth may be put in a more general context:ﬁ

e In pure mathematics, where each specific theory T carries its own (implicit) defini-
tions and proof system, it is not theorems ¢ of 7" but metamathematical claims of
the sort 7 - @ (i,e., ‘T proves @’) that are true (or false). This is quite anti-platonic.

e Since a model M having property p corresponds to a theorem ¢ of the theory T of
which M is a model, it follows that properties p of models M have no truth value;
but claims to the effect that M has property p do. Even realists might accept this!

A further relative kind of truth (or at least accuracy) may also arise from the com-
parison between a model and nature. How is this comparison made? First, recall from
the Introduction that in modern physics the notion of a “target” is problematic, so that
traditional ideas about the relationship between a model and its target do not apply. To
obviate this problem I follow van Fraassen (2008) in letting a data model stand between
the natural phenomena some mathematical theory and ensuing model are supposed to be
about, and that mathematical model. Think of a numerical tables in which the positions
of planets are recorded on a daily basisErI Even in the most advanced sciences, the math-
ematical structure of data models is elementary: they consist of numerical tables or more
complicated arrays of numbers, or graphs, or, like in the old days of bubble chambers, of
photographs displaying simple geometric figures or patterns. As van Fraassen states, data
models do not stand on their own or come out of the blue; they are typically constructed
on the basis of theories. Van Fraassen then asks and answers the million dollar question:

what is the relation between the theoretical model and the phenomena it models?

The short answer is this: construction of a data model is precisely the selective rele-
vant depiction of the phenomena by the user of the theory required for the possibility
of representation of the phenomenon. (van Fraassen, 2008, p. 253)

9 Different interpretations of conventions would make the rules stating these true by definition.

93The first bullet on truth in pure mathematics is defended in Landsman and Singh (2025). The second
bullet is a corollary thereof, although it may be defensible also by itself, without endorsing the first one.

%The associated theory could be Newton’s theory of gravity, or Einstein’s, whose pertinent models
would then be some Newtonian spacetime with specific heavenly bodies moving according to Newton’s
laws, or a solution to Einstein’s equations for some energy-momentum tensor. The parameters in these
mathematical models (like the masses and orbital parameters) are estimated from the data models they
are supposed to measure, exemplifying the endless ping-pong match between theory and data inherent to
physics. Unlike data models, mathematical models can be as mathematically advanced as one likes.
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With due flexibility in the interpretation of what is meant by a ‘user’ (which may be a
synchronic or even diachronic team of scientists!)@l take this to be not only a valid de-
scription of the practice of (astro)physics, but also an answer to the applicability question:
how mathematics can possibly relate to nature, given that, as I have argued, the latter lacks
a mathematical structure (much as it lacks a linguistic structure). On a Wittgensteinian
view mathematics is not discovered but invented, so that any kind of mathematical struc-
ture can only reside in our theories of nature, not in nature itself (even granting the realists
that nature is not a product of the mind). Indeed, it is the ‘user’ who extracts mathemati-
cal structure from natural phenomena, and who presumably selects these phenomena right
because of the possibility of doing so@ In this repect we side with Wigner and Zimmer:

[T]he point which is most significant in the present context is that all these laws of
nature contain, in even their remotest consequences, only a small part of our knowl-
edge of the inanimate world. (Wigner, 1960, p. 5)

The beams of scientific flashlights are bright, but only because they are narrow.
(Zimmer, 2021, p. 10)

Thus the role of models as yardsticks or objects of comparison has been shifted from a
naive place between theories and natural phenomena to their proper place between math-
ematical theories and data models (which as said are also mathematical, but low-grade).
Even so, the question how the comparison is done remains. The history of mathemat-
ical physics as reviewed above suggests that this is done by surrogative inferentialism.
This originally meant that inferences about a model enable inferences about its target,
based on some kind of structural similarity between model and target Since in modern
mathematical physics targets are usually conceived are questionable for the reasons stated
in the Introduction, the inferences about a mathematical model (of some underlying the-
ory) should lead to inferences about a data model for some range of natural phenomena.
Even so, mathematical models keep their tradition role of explaining, understanding, pre-
dicting and retrodicting various aspects of the phenomena as captured by the data model.
The use of data models is a crucial part of the answer to the question how mathematical
models relate to nature. In different approaches, one either has to assume that nature itself
is mathematical, which as explained in the first half of this Element 1 claim one cannot
reasonably believe after Newton, or introduce some circularity Data models break
the latter threat in having a mathematical structure, low-grade as it may be, so that the
comparison between mathematical models and data models is done within mathematics.
Since mathematical models of modern theories of physics use high-level mathematics
whereas data models are low grade, there is little hope for structural similarities between
the two: think of the Schwarzschild (or Kerr) spacetime define by general relativity versus
a table of dated planetary positions (or VLBI radio data coming from M87 or Sag A*). For
this reason I side with Sudrez (2024) in asking very little of surrogative inferences, except

%The user also carries out the data analysis, which as recalled in the Introduction is theory dependent.
%See e.g. Bogen & Woodward (1998) and Bokulich & Parker (2021) for critical discussions of data
models. Since both accept unambiguous targets, their arguments need not apply to mathematical physics.
97See e.g. Swoyer (1991), Bueno & French (2018), Warren (2020), Frigg (2022), and Povich (2024).
98See also Wallace (2022, 2024). It should be obvious from this paper that I sympathize with Wallace’s
‘math-first’ approach to physical theories, but reject his associated structural realism; see also Psillos (2001).
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that the (mathematical) model has what he calls representational force and inferential
capacity, i.e., the capacity to enable ‘a suitably competent and informed inquirer in the
appropriate normative context of use’ to actually make inferences about the target (in his
case), or the data model (in van Fraassen’s approach). Efforts to make this more precise
are, in my view, doomed to fail, and in any case are less useful than concrete examples.

First, the theories of Ptolemy, Copernicus, Kepler, Newton, and Einstein all allow
inferences about future positions of the planets from current or past ones, which may be
checked against data models in the form of tables. Or, in a more complicated example: the
mathematical model is the Kerr black hole spacetime of general relativity, perturbed by
surrounding matter that produces radio waves of which some reach the Earth. The relevant
parameters (like the mass and angular momentum of the black hole) are estimated from a
data model, which in case of the famous EHT images of M87 and Sagittarius A* already
alluded to consists of data from various runs of an array of radio telescopes all over the
world, appropriately synchronized and organized. Here the mutual interdependence of
mathematical model and data model is so intricate that the traditional idea that the former
has some target becomes chimerical (cf. the Introduction)@ Indeed, properties typically
attributed to a target ( “there is a supermassive black hole in the center of our galaxy”)
on the basis of data belong to the mathematical model. This example also shows the role
of the a priori: the theory of general relativity constitutes the meaning of “spacetime”,
“causal structure”, and “black holes”, since it is within this theory that one can define
these concepts in a model-independent way,m in order to apply them to specific models.

My second example highlights the role of theories as yardsticks. The Standard Model
of high-energy physics (SM) was developed in the 1960s and 1970s, and turned out to
be astonishingly accurate, culminating in the discovery of the Higgs boson in 2012 at
CERN@ The theory underlying this model is quantum field theory (QFT)@ which for
example defines elementary particles, including concepts of mass, charge, and symmetry
(of which the SM has various sorts). Similarly, QFT defines what is meant by a vacuum,
by energy, etc Somewhat depending of what one exactly means by a QFT, the SM is
an interpretation or realization of its mathematical and conceptual framework.

Upon its completion in 1975, the SM was triumphantly hailed as the truth about (fun-
damental) physics, incorporating everything that was known about atoms, light, electro-
dynamics, radio-activity, nuclei, elementary particle physics, etc. (except gravity). Part of
this triumph remains: in its normative role the SM defines what we mean by electrons,
photons, quarks, weak neutral currents, etc. But its second role as an empirical yardstick
resonates with the fact that today, physicists hope that new experimental results from col-
liders or cosmic rays will violate the predictions (inferences) of the model! Thus the SM
is held against new data models perhaps without expecting agreement.

9 Again, see Doboszewski & Elder (2025) and Ochigame, Skulberg, & van Dongen (2025) for details.

105ee e.g. Landsman (2022), chapter 10, largely based on work of Penrose. Many textbooks on general
relativity do not cleanly separate the development of the conceptual apparatus from its use in models.

101See Galison (1983), Pickering (1984b), Pais (1986), and Brown et al. (1997) for various aspects of the
history of the Standard Model. Cottingham & Greenwood (2007) is a nice textbook.

102To be precise, quantum field theory has not yet reached the state of mathematical rigour that contem-
porary mathematical physics asks for, but renormalized perturbation theory has; which so far has been all
that is needed for a comparison of the Standard Model with nature.

103See, from somewhat different perspectives, Haag (1992) and Duncan (2012).
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The Standard Model may seem an extreme case; but I claim that every physical the-
ory has this status, albeit with different balances between the normative and the empirical
interpretations of its yardsticks (i.e., its models)—this balance is fluid in any case. Every
theory is eventually overtaken, often accompanied by profound conceptual changes and
redefinitions of basic terms (see the discussion below). The emergence of non-Euclidean
geometry in the 19th century may also be (re)interpreted in this light: following the 2215
years (300 BCE-1915) in which Euclidean geometry was seen as a true description of the
geometry of the world, it remains viable as a yardstick@ Similarly for the exact solu-
tions of Einstein’s equations for general relativitym Minkowski spacetime is an accurate
yardstick in empty places in the universe; for the solar system we use the Schwarzschild
solution; near a rotating black hole one uses the Kerr solution; the expanding universe is
approximately matched by the Friedman (Lemaitre—Robertson—Walker) solution, etc.

Are such models, then, approximately “true”? They are, but only in the rather weak
sense that inferences made from them enable approximately valid inferences about data
models extracted from phenomena in the corresponding natural realm. Though developed
for differente purposes (made clear in the second part of the quote below), the pragmatist
concept of truth expounded by Andersen (2023) captures this process quite well:

Thinking of truth as trueing, like trueing a bicycle wheel, facilitates thinking of mod-
els and products like diagrams or maps in terms of how well-trued they are to their
target. It captures the Duhemian holism that is also central to pragmatism. It em-
phasizes the process by which models are brought into true with their target systems,
and the fact that this process is not accomplished once and then is done forever, but
instead requires upkeep and ongoing fine-tuning even in the best of cases. True need
not be thought of as part of a binary state ascribed to propositions corresponding to
individual bits of the world, true forever or never. True should instead be thought
of in terms of being in true. It is a directed relation between a knowledge product
and some feature(s) of the world. It is not ascribed only to individual propositions,
or even to well-defined collections of propositions. It admits of degrees and can
be applied to a wide variety of formats, including maps, diagrams, highly idealized
models, and more. There is no single Right Way to true a wheel, though there are
clearly norms by which we can judge if a wheel is in true. (...)

Many of us are concerned with a characteristic anti-scientific attitude, one which sit-
uates the activities of non-specialists reading misleading pop articles as “research,”
one which rejects scientific results with challenges of the form, “But do we really
know that?” This challenge is one we lose when we cede ground by acknowledg-
ing that we do not know, for instance, that human-caused climate change is driving
increasing ecological disasters and climate instability. The current strategy is often
to say, “No, we don’t know that, but ...” and then add caveats such as: science
can’t really know anything; here is our extensive justification for this claim; here is
how knowledge generation in science works; etc. I think these are all wrong, from
the start. We do know these things, full stop, on a pragmatist account of truth and
knowledge. (Andersen, 2023, pp. 68-70)

104See for example Gray (2007) and Torretti (2012).
105Here Stephani et al. (2003) is a standard reference.
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6 Summary and discussion

The philosophy of mathematical physics proposed in this Element takes the ‘crystalline
purity’ of exact theories like general relativity or quantum mechanics out of nature by
relocating such theories to the a priori, construed in a relativized way and decoupled
from Kantian intuition and necessity, so that only its meaning-constitutive part remains.
In this way, I have tried to integrate the history of mathematical physics (and to some
extent mathematics) with “best philosophical practices” from Aristotle to Wittgenstein.
To start, although Aristotle’s “qua” act of separation as such rarely if ever leads to
ideal mathematical objects or properties, it still gives rise to mathematical objects, albeit
“imperfect” ones (such as a line with breadth or a triangle with if ever so slightly rounded
corners). The mind may then so to speak complete the act of separation by replacing
these imperfect objects with perfect ones, which may then act as objects of comparison
to be held against the imperfect mathematical objects, perhaps first without, and subse-
quently with their physical properties These perfect mathematical objects can then be
shared so as to become “memes’”: mathematical purity resides neither in the ineffable pla-
tonic realm (whose existence, following Aristotle and Wittgenstein, I deny) nor is it just
an individual psychological construction a la Brouwer: it is a shareable resource, both
synchronically and diachronically which consists of rules—ideally, crystal clear ones.
This way of (re)locating the ‘crystalline purity’ of exact theories also incorporates
Galilei’s epistemological distinction between what is mathematically simple and hence
within reach of human intellect and what is actually happening in nature, being too com-
plex and therefore unknowable. In mathematical physics, then, the role of the mathemat-
ically simple is to serve as an object of comparison held against the complex phenomena
in nature. On the other hand, although Newton was the main founder of mathematical
physics, little of his philosophical legacy is saved on my proposal: the tension he encoun-
tered between his traditional commitment to seeing mathematical objects actually realized
in nature (notably mechanical trajectories) and his innovative and successful concept of
force, especially the gravitational one, increasingly undermined and eventually blasted
his traditional (“Euclidean”) framework. Indeed, the principal historical development in
mathematical physics (and also in mathematics and theoretical physics) has been the re-
placement of this framework by the hypothetical-deductive one pioneered by Huygens.
Finally, the inextricable tangle of theory and observation in modern physics (incor-
porating in particulart collider physics and relativistic astrophysics) has severely com-
promised the idea that models have targets. This suggests the replacement of natural
phenomena by data models a la van Fraassen as well as the rejection of the idea of struc-
tural similarity between (mathematical or theoretical) models and their targets in favour
of surrogative inference as the pertinent relationship between mathematical models and
data models. This practice in fact goes back to Ptolemy at least; what we should reject is
his accompanying realism, much as we should reject the realism of Copernicus.
The end result of this entire history and philosophy of mathematical physics (as I see
it) is that external reference to real targets in both nature and mathematics has disappeared:

106This gives Aristotle’s mathematics the ‘if ... then’ or fictional character often attributed to it.
107See the discussion on Husserl in the Introduction of Landsman and Singh (2025).
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[W]e are not in fact uncovering the underlying mathematical structures realized in
the world; rather, we are constructing abstract mathematical models and trying our
best to make true assertions about the ways in which they do and do not correspond
to the physical facts. (Maddy, 2008, p. 33)

Many scientists, in particular theoretical physicists, have a strong tendency to think
that their theories are even more real than phenomena themselves. This tendency
stems in the last analysis from a somewhat primitive epistemology, from a lack of
acknowledgment of the subtle relations between the theories (that they handle so well
in practice), the models subsequently established, and the data obtained from their
experimental colleagues. It is the theoretician’s hubris and a form of residual Pla-
tonism (ideas being more real than appearances), paradoxically the outcome of a too
pragmatic, hence, naive orientation. The subtle equilibrium that scientists like Hertz
or Maxwell managed to attain, probably thanks to their mastery of both theoretical
and experimental practices, and their acquaintance with conceptual and philosoph-
ical difficulties, seems to have been lost in our age of hyper-specialized scientists.
(Ferreir6s, 2022, pp. 327)

The philosophy of mathematical physics I propose also resonates with the idea, per-
haps already present in embryonic form in Reichenbach (1920) but certainly made famous
by Kuhn (1962)@ to the effect that ‘normal’ science takes place within a generally ac-
cepted a priori framework, whereas paradigm shifts (or ‘lexical changes’ as Kuhn came to
call them later) correspond to such frameworks beginning to shake for all kinds of reasons
(ranging from new experiments or observations to the discovery of internal contradictions,
or problematic embeddings in larger fields), be overthrown, and finally replaced@ even
in such a way that theories may be ‘incommensurable’ with previous ones.

This Kuhnian picture, in turn, at least in part inspired the “pessimistic (meta) induc-
tion” threat to realism (associated with Putnam and especially Laudan). Of the various
forms this argument may take I just take the following simple and exemplary one. If:

1. in the past most if not all scientific theories have undergone such radical changes
that none of them was ever correct except perhaps empirically and approximately;

2. the present is not privileged, so that these changes may be expected to continue,

then no theory can be said to describe reality in the sense that the entities theory posit are
real and the descriptions of the world they describe are true or approximately true (where
truth is defined by correspondence with reality, which in turn requires that the theory in
question is at least in part referential) Except for denying the second premiss (which
indeed is hard to refute but too Whiggish to my taste), an apparently promising realist
answer to this argument, at least in the context of physics and astronomy, is to admit that:

1081 ater revised in various ways (Horwich, 1993; Kuhn, 2000; Friedman, 2001, 2002).

19This is what makes the a priori ‘relativized’. In general relativity (sic) Friedman (2001) puts the
mathematical framework for general relativity on the a priori side, but not Einstein’s equations. I prefer
to add these—but not the specification of particular energy-momentum tensors and corresponding solutions,
which are on the model side. Either choice has (dis)advantages but mine aligns with my view on models.

110See Wray (2018), chapter 5, for a detailed discussion of four different versions of the argument.

11See Psillos (1999) for various forms of scientific realism, which I condensed into the version above.
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1. Indeed, the conceptual structure of physical theories has changed dramatically.

2. Nonetheless, there are decisive elements of continuity through theory changes, es-
pecially at the level of mathematical structures and/or equationsm which may
survive theory change either approximately, within some domain of validity (think
of Newtonian mechanics for small velocities and small masses) or even entirely if
they are duly “deformed” (which is one way of looking at quantum mechanics)m

Though correct, this move does not save realism (except on extreme forms of mathemati-
cal realism, which again are hard to refute, but are totally at odds with the view of math-
ematics as a human practice advocated here): for the mathematical objects and structures
used in mathematical physics since Newton’s introduction of forces in Principia, all the
way down to Einstein’s Lorentzian metric in general relativity and von Neumann’s com-
plex Hilbert spaces and operator algebras in quantum (field) theory, go well beyond those
that may reasonably be held to be instantiated by natural objects; and thus one should
deny at least pythagorean reality to all but the most basic ones of these objects and struc-
turesm Their realism is equally dubious if their reality lies in idealized mathematical
objects, whose status I have earlier identified, modernizing Husserl, as memes.

On the other hand, realists have forwarded the ‘no miracles’ argument, often seen as
the strongest argument for scientific realism, according to which the success of scientific
theories is only explicable if they are at least approximately true. Again there are various
versions of this argumentE] of which the strongest form seems to me to be closely related
to a point made by Wigner (1960)@ Towards his conclusion, ending his paper, that

“The miracle of the appropriateness of the language of mathematics for the formu-
lation of the laws of physics is a wonderful gift which we neither understand nor
deserve’ (p. 14),

he argues, juxtaposing two entirely different points in a single paragraph, that

Mathematical concepts turn up in entirely unexpected connections. Moreover, they
often permit an unexpectedly close and accurate description of the phenomena in
these connections. (p. 2)

The first point made here is actually not difficult to answerP__ﬂ] The greater the abstrac-
tion of some piece of mathematics, the greater its generality, and hence the greater its
applicability, whatever its origin in physics or mathematics or elsewhere. In addition, the
relocation of the ‘crystalline purity’ of mathematics from the natural realm to the a priori,

'2This may be seen as a special case of Psillos’ (1999) divide et impera argument to the effect that one
may cherry-pick certain parts of theories that survive theory change. Even apart from the argument that
follows I am skeptical about this way of taking “holistic” theories apart; see also Vickers (2013).

13Gee e.g. Saunders (1993) and Wray (2018), chapter 7. Galison (1997), §9.3, highlights continuities in
experimental practices.

4Mathematical structures are themselves mathematical objects and hence I have never understood the
alleged difference in ontology between the two that is supposed to save some form of mathematical realism.

1158ee Psillos (1999) and Wray (2018) for these versions, from opposing views.

116Strangely enough, this famous paper is rarely if ever cited in the context of the no miracles argument.

17See also the references in footnote
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and the accompanying role of models as objects of comparison rather than descriptions of
nature, makes theories and models into fools rather than truths, whose wider applicability
than their original purpose is not really miraculous, although it may still be impressive.
The underdetermination thesis strengthens this replym This thesis even makes the
use of mathematics that was originally invented for different purposes quite natural: peo-
ple like Einstein, in his development of general relativity, or von Neumann, in his mathe-
matical development of quantum mechanics, first looked for mathematics that was avail-
able. Their genius enabled them to develop this mathematics according to their needsm
Combined with a flavour of conventionalism (cf. footnote [14), the underdetermina-
tion thesis also produces an argument against at least pythagorean mathematical realism.
Namely, specific theories (of mathematical physics) may be rewritten in mathematically
equivalent ways that however significantly change the physical picture. For example:

e Although Newtonian gravity was originally based on Euclidean geometry, and is
still generally seen that way, it has been known since the 1920s that it also admits a
(natural) formulation in curved spacetime, like general relativity

e Although general relativity is usually formulated in terms of a Lorentzian metric g
on some manifold M as the primary mathematical structure the alleged reality
of this geometric rendition is compromised in multiple ways:

1. Einstein himself did not regard general relativity as a geometric theory

2. One may formulate general relativity as a theory of interacting massless helicity-
2 particles (gravitons) in Minkowski spacetime

3. The metric may be merely a facon de parler that encodes dynamical behaviour
of the matter fields, rather than the cause or origin thereof

e Quantum theory admits many reformulations, of which my favourite one is in terms
of pure state spaces with a transition probability, where all linearity and complex
numbers have been removed in favour of a dance of interlocked two—spheres

18This thesis claims that there could be various incompatible theories that all describe or explain certain
natural phenomena or data sets, so that it would be hard to consider one and hence not the others to be true.
Wigner (1960) himself repeatedly highlights the possible lack of uniqueness of the theories of physics.

9Einstein did this by combining Riemann’s metric geometry in positive signature for curved spaces
with Minkowski’s metric geometry in indefinite signature for flat spacetimes. Maddy (2007), §IV.2, points
out that Einstein’s use of Riemannian geometry becomes less surprising if one realizes that during his
development of differential geometry Riemann himself was looking both at the physical structure of space
and at field theory (in the physics sense of the word). Einstein’s use of Minkowski spacetime was of course
very natural, as it was developed as a mathematical framework for his special theory of relativity. Von
Neumann knew or found many examples of what we now call Hilbert spaces, which he then abstracted and
defined axiomatically, along with his theory of unbounded operators. See Landsman (2021).

120The original argument was due to E. Cartan. See Malament (2012) for an excellent discussion.

121'This view was pushed especially in the famous textbook by Misner, Thorne, and Wheeler (1973).

122Weinberg (1972) also criticized the geometric view, although he thought that Einstein held it-who in
fact felt that (using tensor calculus) his achievement was to unify gravity and inertia (Lehmkuhl, 2014).

123This idea goes back to Pauli and Fierz. See Salimkhani (2020) for discussion and references.

124This idea originated with Brown (2005). See Brown & Read (2021) for a recent review.

125See von Neumann (1937/1981) and Landsman (1998), and references therein.
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Returning to Wigner’s second quote, it is the second point, almost an aside, that supports
the ‘no miracles’ argument, especially if it is strengthened by adding the historical point
(not made by Wigner) that it is not just the accuracy but also the striking generality of
the main theories of mathematical physics that was truly unexpected. In particular, quan-
tum mechanics, which was invented as a theory of atoms and light, turned out to apply
to condensed matter physics, nuclear physics, etc.; similarly, quantum field theory, which
was originally developed merely as a framework for quantum electrodynamics, came to
encompass all of particle physics, and also there was astonishingly accurate. The fact that
in principle all of condensed matter physics follows from quantum electrodynamics de-
serves to be more widely known. Likewise, general relativity started as a theory of gravity
and inertia, but it gave us black holes and the big bang. Perhaps the most spectacular ex-
ample is thermodynamics, which initially was just a theory of heat and work inspired by
the industrial revolution, but evolved into a framework for energy and entropy that turned
out to be universally applicable, from steam engines to black holes.

This does remain miraculous; but it is a miracle to the realist and the empiricist alike;
neither has a good explanation for the unbelievable luck that physicists found such un-
expectedly powerful theories from very limited data in the first place, and this puzzle is
independent of the question whether these theories are true or merely empirically success-
ful; or believed or just accepted. Perhaps the least unconvincing explanation is the ‘selec-
tionist” one originated with van Fraassen (1980), pp. 39-40, to the effect that theories that
fail to be more accurate and/or general than originally expected tend to be discarded@

Let me end on another sobering note. The loss of realism in mathematical physics I
advocate faces an additional challenge beyond Wigner’s, namely answering the question:

‘what data are taken to provide evidence about.’

My answer would be that data provide evidence about those aspects of the natural phe-
nomena from which these data are extracted that the ‘user’ of these data is interested in.
This answer must be unbearable to a realist, but for an empiricist it is the point of science.
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126See Wray (2018), chapters 9 and 10, for a more recent (and supportive) discussion of this argument.
127See Bokulich & Parker (2021), p. 17, who note that ‘[in] van Fraassen’s scientific structuralism (...)
the relation between data models and the world is not just unaccounted for, but in effect erased.” (p. 6).
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